Cargando…

Consumer Depth Cameras for Computer Vision Research Topics and Applications /

The launch of Microsoft's Kinect, the first high-resolution depth-sensing camera for the consumer market, generated considerable excitement not only among computer gamers, but also within the global community of computer vision researchers. The potential of consumer depth cameras extends well b...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Fossati, Andrea (Editor ), Gall, Juergen (Editor ), Grabner, Helmut (Editor ), Ren, Xiaofeng (Editor ), Konolige, Kurt (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Advances in Computer Vision and Pattern Recognition,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4471-4640-7
003 DE-He213
005 20220116011911.0
007 cr nn 008mamaa
008 121009s2013 xxk| s |||| 0|eng d
020 |a 9781447146407  |9 978-1-4471-4640-7 
024 7 |a 10.1007/978-1-4471-4640-7  |2 doi 
050 4 |a TA1634 
072 7 |a UYQV  |2 bicssc 
072 7 |a COM012000  |2 bisacsh 
072 7 |a UYQV  |2 thema 
082 0 4 |a 006.37  |2 23 
245 1 0 |a Consumer Depth Cameras for Computer Vision  |h [electronic resource] :  |b Research Topics and Applications /  |c edited by Andrea Fossati, Juergen Gall, Helmut Grabner, Xiaofeng Ren, Kurt Konolige. 
250 |a 1st ed. 2013. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2013. 
300 |a XVI, 210 p. 109 illus., 106 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6594 
505 0 |a Part I: 3D Registration and Reconstruction -- 3D with Kinect -- Real-Time RGB-D Mapping and 3-D Modeling on the GPU using the Random Ball Cover -- A Brute Force Approach to Depth Camera Odometry -- Part II: Human Body Analysis -- Key Developments in Human Pose Estimation for Kinect -- A Data-Driven Approach for Real-Time Full Body Pose Reconstruction from a Depth Camera -- Home 3D Body Scans from a Single Kinect -- Real-Time Hand Pose Estimation using Depth Sensors -- Part III: RGB-D Datasets -- A Category-Level 3D Object Dataset: Putting the Kinect to Work -- RGB-D Object Recognition: Features, Algorithms, and a Large Scale Benchmark -- RGBD-HuDaAct: A Color-Depth Video Database for Human Daily Activity Recognition. 
520 |a The launch of Microsoft's Kinect, the first high-resolution depth-sensing camera for the consumer market, generated considerable excitement not only among computer gamers, but also within the global community of computer vision researchers. The potential of consumer depth cameras extends well beyond entertainment and gaming, to real-world commercial applications such virtual fitting rooms, training for athletes, and assistance for the elderly. This authoritative text/reference reviews the scope and impact of this rapidly growing field, describing the most promising Kinect-based research activities, discussing significant current challenges, and showcasing exciting applications. Topics and features: Presents contributions from an international selection of preeminent authorities in their fields, from both academic and corporate research Addresses the classic problem of multi-view geometry of how to correlate images from different viewpoints to simultaneously estimate camera poses and world points Examines human pose estimation using video-rate depth images for gaming, motion capture, 3D human body scans, and hand pose recognition for sign language parsing Provides a review of approaches to various recognition problems, including category and instance learning of objects, and human activity recognition With a Foreword by Dr. Jamie Shotton of Microsoft Research, Cambridge, UK This broad-ranging overview is a must-read for researchers and graduate students of computer vision and robotics wishing to learn more about the state of the art of this increasingly "hot" topic. 
650 0 |a Computer vision. 
650 0 |a Pattern recognition systems. 
650 0 |a Computer graphics. 
650 1 4 |a Computer Vision. 
650 2 4 |a Automated Pattern Recognition. 
650 2 4 |a Computer Graphics. 
700 1 |a Fossati, Andrea.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Gall, Juergen.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Grabner, Helmut.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Ren, Xiaofeng.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Konolige, Kurt.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781447146414 
776 0 8 |i Printed edition:  |z 9781447146391 
776 0 8 |i Printed edition:  |z 9781447169772 
830 0 |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6594 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4471-4640-7  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)