Cargando…

Symmetry and Pattern in Projective Geometry

Symmetry and Pattern in Projective Geometry is a self-contained study of projective geometry which compares and contrasts the analytic and axiomatic methods.The analytic approach is based on homogeneous coordinates. Brief introductions to Plücker coordinates and Grassmann coordinates are also prese...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lord, Eric (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4471-4631-5
003 DE-He213
005 20220115022830.0
007 cr nn 008mamaa
008 121213s2013 xxk| s |||| 0|eng d
020 |a 9781447146315  |9 978-1-4471-4631-5 
024 7 |a 10.1007/978-1-4471-4631-5  |2 doi 
050 4 |a QA471 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
072 7 |a PBM  |2 thema 
082 0 4 |a 516.5  |2 23 
100 1 |a Lord, Eric.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Symmetry and Pattern in Projective Geometry  |h [electronic resource] /  |c by Eric Lord. 
250 |a 1st ed. 2013. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2013. 
300 |a XI, 184 p. 103 illus., 20 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Foundations: the Synthetic Approach -- The Analytic Approach -- Linear Figures -- Quadratic Figures -- Cubic Figures -- Quartic Figures -- Finite Geometries. 
520 |a Symmetry and Pattern in Projective Geometry is a self-contained study of projective geometry which compares and contrasts the analytic and axiomatic methods.The analytic approach is based on homogeneous coordinates. Brief introductions to Plücker coordinates and Grassmann coordinates are also presented. This book looks carefully at linear, quadratic, cubic and quartic figures in two, three and higher dimensions. It deals at length with the extensions and consequences of basic theorems such as those of Pappus and Desargues. The emphasis throughout is on special configurations that have particularly interesting symmetry properties.   The intricate and novel ideas of H S M Coxeter, who is considered one of the great geometers of the twentieth century, are also discussed throughout the text. The book concludes with a useful analysis of finite geometries and a description of some of the remarkable configurations discovered by Coxeter.   This book will be appreciated by mathematics undergraduate students and those wishing to learn more about the subject of geometry. Subject and theorems that are often considered quite complicated are made accessible and presented in an easy-to-read and enjoyable manner. . 
650 0 |a Projective geometry. 
650 0 |a Computer science-Mathematics. 
650 0 |a Mathematics. 
650 1 4 |a Projective Geometry. 
650 2 4 |a Symbolic and Algebraic Manipulation. 
650 2 4 |a Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781447146322 
776 0 8 |i Printed edition:  |z 9781447146308 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4471-4631-5  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)