Cargando…

Automorphic Forms

Automorphic forms are an important complex analytic tool in number theory and modern arithmetic geometry. They played for example a vital role in Andrew Wiles's proof of Fermat's Last Theorem. This text provides a concise introduction to the world of automorphic forms using two approaches:...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Deitmar, Anton (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:Universitext,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4471-4435-9
003 DE-He213
005 20220115000713.0
007 cr nn 008mamaa
008 120828s2012 xxk| s |||| 0|eng d
020 |a 9781447144359  |9 978-1-4471-4435-9 
024 7 |a 10.1007/978-1-4471-4435-9  |2 doi 
050 4 |a QA1-939 
072 7 |a PB  |2 bicssc 
072 7 |a MAT000000  |2 bisacsh 
072 7 |a PB  |2 thema 
082 0 4 |a 510  |2 23 
100 1 |a Deitmar, Anton.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Automorphic Forms  |h [electronic resource] /  |c by Anton Deitmar. 
250 |a 1st ed. 2012. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2012. 
300 |a IX, 252 p. 2 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 2191-6675 
520 |a Automorphic forms are an important complex analytic tool in number theory and modern arithmetic geometry. They played for example a vital role in Andrew Wiles's proof of Fermat's Last Theorem. This text provides a concise introduction to the world of automorphic forms using two approaches: the classic elementary theory and the modern point of view of adeles and representation theory. The reader will learn the important aims and results of the theory by focussing on its essential aspects and restricting it to the 'base field' of rational numbers. Students interested for example in arithmetic geometry or number theory will find that this book provides an optimal and easily accessible introduction into this topic. 
650 0 |a Mathematics. 
650 0 |a Number theory. 
650 0 |a Group theory. 
650 0 |a Algebra. 
650 1 4 |a Mathematics. 
650 2 4 |a Number Theory. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Algebra. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781447144366 
776 0 8 |i Printed edition:  |z 9781447144342 
830 0 |a Universitext,  |x 2191-6675 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4471-4435-9  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)