Cargando…

Matrix Transforms for Computer Games and Animation

Matrix transforms are ubiquitous within the world of computer graphics, where they have become an invaluable tool in a programmer's toolkit for solving everything from 2D image scaling to 3D rotation about an arbitrary axis. Virtually every software system and hardware graphics processor uses m...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Vince, John (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4471-4321-5
003 DE-He213
005 20220118171616.0
007 cr nn 008mamaa
008 120626s2012 xxk| s |||| 0|eng d
020 |a 9781447143215  |9 978-1-4471-4321-5 
024 7 |a 10.1007/978-1-4471-4321-5  |2 doi 
050 4 |a TA1501-1820 
050 4 |a TA1634 
072 7 |a UYT  |2 bicssc 
072 7 |a COM016000  |2 bisacsh 
072 7 |a UYT  |2 thema 
082 0 4 |a 006  |2 23 
100 1 |a Vince, John.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Matrix Transforms for Computer Games and Animation  |h [electronic resource] /  |c by John Vince. 
250 |a 1st ed. 2012. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2012. 
300 |a XI, 166 p. 45 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- Introduction -- Introduction to Matrix Notation -- Determinants -- Matrices -- Matrix Transforms -- Transforms -- Quaternions -- Conclusion -- Composite Point Rotation Sequences -- Index. 
520 |a Matrix transforms are ubiquitous within the world of computer graphics, where they have become an invaluable tool in a programmer's toolkit for solving everything from 2D image scaling to 3D rotation about an arbitrary axis. Virtually every software system and hardware graphics processor uses matrices to undertake operations such as scaling, translation, reflection and rotation. Nevertheless, for some newcomers to the world of computer games and animation, matrix notation can appear obscure and challenging. Matrices and determinants were originally used to solve groups of simultaneous linear equations, and were subsequently embraced by the computer graphics community to describe the geometric operations for manipulating two- and three-dimensional structures. Consequently, to place matrix notation within an historical context, the author provides readers with some useful background to their development, alongside determinants. Although it is assumed that the reader is familiar with everyday algebra and the solution of simultaneous linear equations, Matrix Transforms for Computer Games and Animation does not expect any prior knowledge of matrix notation. It includes chapters on matrix notation, determinants, matrices, 2D transforms, 3D transforms and quaternions, and includes many worked examples to illustrate their practical use. 
650 0 |a Image processing-Digital techniques. 
650 0 |a Computer vision. 
650 0 |a Mathematics. 
650 1 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics. 
650 2 4 |a Mathematics. 
650 2 4 |a Computer Vision. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781447143208 
776 0 8 |i Printed edition:  |z 9781447143222 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4471-4321-5  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)