Cargando…

Two-Dimensional Change Detection Methods Remote Sensing Applications /

Change detection using remotely sensed images has many applications, such as urban monitoring, land-cover change analysis, and disaster management. This work investigates two-dimensional change detection methods. The existing methods in the literature are grouped into four categories: pixel-based, t...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: İlsever, Murat (Autor), Ünsalan, Cem (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:SpringerBriefs in Computer Science,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4471-4255-3
003 DE-He213
005 20220117170645.0
007 cr nn 008mamaa
008 120621s2012 xxk| s |||| 0|eng d
020 |a 9781447142553  |9 978-1-4471-4255-3 
024 7 |a 10.1007/978-1-4471-4255-3  |2 doi 
050 4 |a TA1634 
072 7 |a UYQV  |2 bicssc 
072 7 |a COM012000  |2 bisacsh 
072 7 |a UYQV  |2 thema 
082 0 4 |a 006.37  |2 23 
100 1 |a İlsever, Murat.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Two-Dimensional Change Detection Methods  |h [electronic resource] :  |b Remote Sensing Applications /  |c by Murat İlsever, Cem Ünsalan. 
250 |a 1st ed. 2012. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2012. 
300 |a X, 72 p. 48 illus., 22 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5776 
505 0 |a Introduction -- Pixel-Based Change Detection Methods -- Transformation-Based Change Detection Methods -- Structure-Based Change Detection Methods -- Fusion of Change Detection Methods -- Experiments -- Final Comments. 
520 |a Change detection using remotely sensed images has many applications, such as urban monitoring, land-cover change analysis, and disaster management. This work investigates two-dimensional change detection methods. The existing methods in the literature are grouped into four categories: pixel-based, transformation-based, texture analysis-based, and structure-based. In addition to testing existing methods, four new change detection methods are introduced: fuzzy logic-based, shadow detection-based, local feature-based, and bipartite graph matching-based. The latter two methods form the basis for a structural analysis of change detection. Three thresholding algorithms are compared, and their effects on the performance of change detection methods are measured. These tests on existing and novel change detection methods make use of a total of 35 panchromatic and multi-spectral Ikonos image sets. Quantitative test results and their interpretations are provided. 
650 0 |a Computer vision. 
650 0 |a Pattern recognition systems. 
650 1 4 |a Computer Vision. 
650 2 4 |a Automated Pattern Recognition. 
700 1 |a Ünsalan, Cem.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781447142560 
776 0 8 |i Printed edition:  |z 9781447142546 
830 0 |a SpringerBriefs in Computer Science,  |x 2191-5776 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4471-4255-3  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)