Cargando…

Frequency Domain Criteria for Absolute Stability A Delay-integral-quadratic Constraints Approach /

Frequency Domain Criteria for Absolute Stability focuses on recently-developed methods of delay-integral-quadratic constraints to provide criteria for absolute stability of nonlinear control systems. The known or assumed properties of the system are the basis from which stability criteria are develo...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Altshuller, Dmitry (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Lecture Notes in Control and Information Sciences, 432
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4471-4234-8
003 DE-He213
005 20220117173521.0
007 cr nn 008mamaa
008 120721s2013 xxk| s |||| 0|eng d
020 |a 9781447142348  |9 978-1-4471-4234-8 
024 7 |a 10.1007/978-1-4471-4234-8  |2 doi 
050 4 |a TJ212-225 
072 7 |a TJFM  |2 bicssc 
072 7 |a GPFC  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
072 7 |a TJFM  |2 thema 
082 0 4 |a 629.8312  |2 23 
082 0 4 |a 003  |2 23 
100 1 |a Altshuller, Dmitry.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Frequency Domain Criteria for Absolute Stability  |h [electronic resource] :  |b A Delay-integral-quadratic Constraints Approach /  |c by Dmitry Altshuller. 
250 |a 1st ed. 2013. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2013. 
300 |a X, 142 p. 13 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Control and Information Sciences,  |x 1610-7411 ;  |v 432 
505 0 |a A Historical Survey -- Foundations -- Stability Multipliers -- Time-periodic Systems. 
520 |a Frequency Domain Criteria for Absolute Stability focuses on recently-developed methods of delay-integral-quadratic constraints to provide criteria for absolute stability of nonlinear control systems. The known or assumed properties of the system are the basis from which stability criteria are developed. Through these methods, many classical results are naturally extended, particularly to time-periodic but also to nonstationary systems. Mathematical prerequisites including Lebesgue-Stieltjes measures and integration are first explained in an informal style with technically more difficult proofs presented in separate sections that can be omitted without loss of continuity. The results are presented in the frequency domain - the form in which they naturally tend to arise. In some cases, the frequency-domain criteria can be converted into computationally tractable linear matrix inequalities but in others, especially those with a certain geometric interpretation, inferences concerning stability can be made directly from the frequency-domain inequalities. The book is intended for applied mathematicians and control systems theorists. It can also be of considerable use to mathematically-minded engineers working with nonlinear systems. 
650 0 |a Control engineering. 
650 0 |a System theory. 
650 0 |a Control theory. 
650 1 4 |a Control and Systems Theory. 
650 2 4 |a Systems Theory, Control . 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781447142355 
776 0 8 |i Printed edition:  |z 9781447142331 
830 0 |a Lecture Notes in Control and Information Sciences,  |x 1610-7411 ;  |v 432 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4471-4234-8  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
912 |a ZDB-2-LNI 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)