Cargando…

Stochastic Averaging and Stochastic Extremum Seeking

Stochastic Averaging and Stochastic Extremum Seeking develops methods of mathematical analysis inspired by the interest in reverse engineering  and analysis of bacterial  convergence by chemotaxis and to apply similar stochastic optimization techniques in other environments. The first half of the te...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Liu, Shu-Jun (Autor), Krstic, Miroslav (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:Communications and Control Engineering,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4471-4087-0
003 DE-He213
005 20220117121427.0
007 cr nn 008mamaa
008 120615s2012 xxk| s |||| 0|eng d
020 |a 9781447140870  |9 978-1-4471-4087-0 
024 7 |a 10.1007/978-1-4471-4087-0  |2 doi 
050 4 |a TJ212-225 
072 7 |a TJFM  |2 bicssc 
072 7 |a GPFC  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
072 7 |a TJFM  |2 thema 
082 0 4 |a 629.8312  |2 23 
082 0 4 |a 003  |2 23 
100 1 |a Liu, Shu-Jun.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Stochastic Averaging and Stochastic Extremum Seeking  |h [electronic resource] /  |c by Shu-Jun Liu, Miroslav Krstic. 
250 |a 1st ed. 2012. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2012. 
300 |a XII, 224 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Communications and Control Engineering,  |x 2197-7119 
505 0 |a Stochastic Averaging for Aymptotic Stability -- Stochastic Averaging for Practical Stability -- Single-parameter Stochastic Extremum Seeking -- Stochastic Source Seeking for Nonholonomic Vehicles -- Stochastic Source Seeking with Tuning of Forward Velocity -- Multi-parameter Stochastic Extremum Seeking and Slope Seeking -- Stochastic Nash Equilibrium Seeking for Games with General Nonlinear Payoffs -- Nash Equilibrium Seeking for Quadratic Games and Application to Oligopoly Markets and Vehicle Deployment -- Newton-based Stochastic Extremum Seeking. 
520 |a Stochastic Averaging and Stochastic Extremum Seeking develops methods of mathematical analysis inspired by the interest in reverse engineering  and analysis of bacterial  convergence by chemotaxis and to apply similar stochastic optimization techniques in other environments. The first half of the text presents significant advances in stochastic averaging theory, necessitated by the fact that existing theorems are restricted to systems with linear growth, globally exponentially stable average models, vanishing stochastic perturbations, and prevent analysis over infinite time horizon. The second half of the text introduces stochastic extremum seeking algorithms for model-free optimization of systems in real time using stochastic perturbations for estimation of their gradients. Both gradient- and Newton-based algorithms are presented, offering the user the choice between the simplicity of implementation (gradient) and the ability to achieve a known, arbitrary convergence rate (Newton). The design of algorithms for non-cooperative/adversarial games is described. The analysis of their convergence to Nash equilibria is provided. The algorithms are illustrated on models of economic competition and on problems of the deployment of teams of robotic vehicles. Bacterial locomotion, such as chemotaxis in E. coli, is explored with the aim of identifying two simple feedback laws for climbing nutrient gradients. Stochastic extremum seeking is shown to be a biologically plausible interpretation for chemotaxis. For the same chemotaxis-inspired stochastic feedback laws, the book also provides a detailed analysis of convergence for models of nonholonomic robotic vehicles operating in GPS-denied environments. The book contains block diagrams and several simulation examples, including examples arising from bacterial locomotion, multi-agent robotic systems, and economic market models. Stochastic Averaging and Extremum Seeking will be informative for control engineers from backgrounds in electrical, mechanical, chemical and aerospace engineering and to applied mathematicians. Economics researchers, biologists, biophysicists and roboticists will find the applications examples instructive. The Communications and Control Engineering series reports major technological advances which have potential for great impact in the fields of communication and control. It reflects research in industrial and academic institutions around the world so that the readership can exploit new possibilities as they become available. 
650 0 |a Control engineering. 
650 0 |a Mathematical optimization. 
650 0 |a Calculus of variations. 
650 0 |a Econometrics. 
650 0 |a Bioinformatics. 
650 0 |a Robotics. 
650 0 |a Automation. 
650 0 |a System theory. 
650 0 |a Control theory. 
650 1 4 |a Control and Systems Theory. 
650 2 4 |a Calculus of Variations and Optimization. 
650 2 4 |a Quantitative Economics. 
650 2 4 |a Computational and Systems Biology. 
650 2 4 |a Control, Robotics, Automation. 
650 2 4 |a Systems Theory, Control . 
700 1 |a Krstic, Miroslav.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781447140863 
776 0 8 |i Printed edition:  |z 9781447140887 
776 0 8 |i Printed edition:  |z 9781447161851 
830 0 |a Communications and Control Engineering,  |x 2197-7119 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4471-4087-0  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)