|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-1-4471-4002-3 |
003 |
DE-He213 |
005 |
20220121012951.0 |
007 |
cr nn 008mamaa |
008 |
120516s2012 xxk| s |||| 0|eng d |
020 |
|
|
|a 9781447140023
|9 978-1-4471-4002-3
|
024 |
7 |
|
|a 10.1007/978-1-4471-4002-3
|2 doi
|
050 |
|
4 |
|a QA267-268.5
|
072 |
|
7 |
|a UYA
|2 bicssc
|
072 |
|
7 |
|a MAT018000
|2 bisacsh
|
072 |
|
7 |
|a UYA
|2 thema
|
082 |
0 |
4 |
|a 005.131
|2 23
|
100 |
1 |
|
|a Rademaker, Alexandre.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
2 |
|a A Proof Theory for Description Logics
|h [electronic resource] /
|c by Alexandre Rademaker.
|
250 |
|
|
|a 1st ed. 2012.
|
264 |
|
1 |
|a London :
|b Springer London :
|b Imprint: Springer,
|c 2012.
|
300 |
|
|
|a X, 106 p. 16 illus.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a SpringerBriefs in Computer Science,
|x 2191-5776
|
505 |
0 |
|
|a Introduction -- Background -- Sequent Calculus for ALC -- Comparing SCalc with other ALC Deduction Systems -- Natural Deduction for ALC.- A Proof Theory for ALCQI -- Proofs and Explanations -- A Prototype Theorem Prover -- Conclusion.
|
520 |
|
|
|a Description Logics (DLs) is a family of formalisms used to represent knowledge of a domain. They are equipped with a formal logic-based semantics. Knowledge representation systems based on description logics provide various inference capabilities that deduce implicit knowledge from the explicitly represented knowledge. A Proof Theory for Description Logics introduces Sequent Calculi and Natural Deduction for some DLs (ALC, ALCQ). Cut-elimination and Normalization are proved for the calculi. The author argues that such systems can improve the extraction of computational content from DLs proofs for explanation purposes.
|
650 |
|
0 |
|a Machine theory.
|
650 |
|
0 |
|a Computer science-Mathematics.
|
650 |
1 |
4 |
|a Formal Languages and Automata Theory.
|
650 |
2 |
4 |
|a Mathematics of Computing.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9781447140030
|
776 |
0 |
8 |
|i Printed edition:
|z 9781447140016
|
830 |
|
0 |
|a SpringerBriefs in Computer Science,
|x 2191-5776
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/978-1-4471-4002-3
|z Texto Completo
|
912 |
|
|
|a ZDB-2-SCS
|
912 |
|
|
|a ZDB-2-SXCS
|
950 |
|
|
|a Computer Science (SpringerNature-11645)
|
950 |
|
|
|a Computer Science (R0) (SpringerNature-43710)
|