Normal Forms, Melnikov Functions and Bifurcations of Limit Cycles
Dynamical system theory has developed rapidly over the past fifty years. It is a subject upon which the theory of limit cycles has a significant impact for both theoretical advances and practical solutions to problems. Hopf bifurcation from a center or a focus is integral to the theory of bifurcati...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Autor Corporativo: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London :
Springer London : Imprint: Springer,
2012.
|
Edición: | 1st ed. 2012. |
Colección: | Applied Mathematical Sciences,
181 |
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- Hopf Bifurcation and Normal Form Computation
- Comparison of Methods for Computing Focus Values
- Application (I)-Hilbert's 16th Problem
- Application (II)-Practical Problems
- Fundamental Theory of the Melnikov Function Method
- Limit Cycle Bifurcations Near a Center
- Limit Cycles Near a Homoclinic or Heteroclinic Loop
- Finding More Limit Cycles Using Melnikov Functions
- Limit Cycle Bifurcations in Equivariant Systems.