Cargando…

Finitely Generated Abelian Groups and Similarity of Matrices over a Field

At first sight, finitely generated abelian groups and canonical forms of matrices appear to have little in common.  However, reduction to Smith normal form, named after its originator H.J.S.Smith in 1861, is a matrix version of the Euclidean algorithm and is exactly what the theory requires in both...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Norman, Christopher (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:Springer Undergraduate Mathematics Series,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4471-2730-7
003 DE-He213
005 20220117173222.0
007 cr nn 008mamaa
008 120124s2012 xxk| s |||| 0|eng d
020 |a 9781447127307  |9 978-1-4471-2730-7 
024 7 |a 10.1007/978-1-4471-2730-7  |2 doi 
050 4 |a QA247-247.45 
050 4 |a QA161.P59 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512.3  |2 23 
100 1 |a Norman, Christopher.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Finitely Generated Abelian Groups and Similarity of Matrices over a Field  |h [electronic resource] /  |c by Christopher Norman. 
250 |a 1st ed. 2012. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2012. 
300 |a XII, 381 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Undergraduate Mathematics Series,  |x 2197-4144 
505 0 |a Part 1 :Finitely Generated Abelian Groups: Matrices with Integer Entries: The Smith Normal Form -- Basic Theory of Additive Abelian Groups -- Decomposition of Finitely Generated  Z-Modules. Part 2: Similarity of Square Matrices over a Field: The Polynomial Ring F[x] and Matrices over F[x]- F[x] Modules: Similarity of t xt Matrices over a Field F -- Canonical Forms and Similarity Classes of Square Matrices over a Field.        . 
520 |a At first sight, finitely generated abelian groups and canonical forms of matrices appear to have little in common.  However, reduction to Smith normal form, named after its originator H.J.S.Smith in 1861, is a matrix version of the Euclidean algorithm and is exactly what the theory requires in both cases.  Starting with matrices over the integers, Part 1 of this book provides a measured introduction to such groups: two finitely generated abelian groups are isomorphic if and only if their invariant factor sequences are identical.  The analogous theory of matrix similarity over a field is then developed in Part 2 starting with matrices having polynomial entries: two matrices over a field are similar if and only if their rational canonical forms are equal.  Under certain conditions each matrix is similar to a diagonal or nearly diagonal matrix, namely its Jordan form. The reader is assumed to be familiar with the elementary properties of rings and fields.  Also a knowledge of abstract linear algebra including vector spaces, linear mappings, matrices, bases and dimension is essential, although much of the theory is covered in the text but from a more general standpoint: the role of vector spaces is widened to modules over commutative rings. Based on a lecture course taught by the author for nearly thirty years, the book emphasises algorithmic techniques and features numerous worked examples and exercises with solutions.  The early chapters form an ideal second course in algebra for second and third year undergraduates.  The later chapters, which cover closely related topics, e.g. field extensions, endomorphism rings, automorphism groups, and variants of the canonical forms, will appeal to more advanced students.  The book is a bridge between linear and abstract algebra. 
650 0 |a Algebraic fields. 
650 0 |a Polynomials. 
650 0 |a Group theory. 
650 0 |a Algebras, Linear. 
650 0 |a Algorithms. 
650 1 4 |a Field Theory and Polynomials. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Linear Algebra. 
650 2 4 |a Algorithms. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781447127291 
776 0 8 |i Printed edition:  |z 9781447127314 
830 0 |a Springer Undergraduate Mathematics Series,  |x 2197-4144 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4471-2730-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)