Cargando…

Mathematical Methods for Signal and Image Analysis and Representation

Mathematical Methods for Signal and Image Analysis and Representation presents the mathematical methodology for generic image analysis tasks. In the context of this book an image may be any m-dimensional empirical signal living on an n-dimensional smooth manifold (typically, but not necessarily, a s...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Florack, Luc (Editor ), Duits, Remco (Editor ), Jongbloed, Geurt (Editor ), van Lieshout, Marie-Colette (Editor ), Davies, Laurie (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:Computational Imaging and Vision ; 41
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4471-2353-8
003 DE-He213
005 20220116223603.0
007 cr nn 008mamaa
008 120111s2012 xxk| s |||| 0|eng d
020 |a 9781447123538  |9 978-1-4471-2353-8 
024 7 |a 10.1007/978-1-4471-2353-8  |2 doi 
050 4 |a QA1-939 
072 7 |a PB  |2 bicssc 
072 7 |a MAT000000  |2 bisacsh 
072 7 |a PB  |2 thema 
082 0 4 |a 510  |2 23 
245 1 0 |a Mathematical Methods for Signal and Image Analysis and Representation  |h [electronic resource] /  |c edited by Luc Florack, Remco Duits, Geurt Jongbloed, Marie-Colette van Lieshout, Laurie Davies. 
250 |a 1st ed. 2012. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2012. 
300 |a XII, 320 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Computational Imaging and Vision ;  |v 41 
505 0 |a A Short Introduction to Diffusion-like Methods -- Adaptive Filtering using Channel Representations -- 3D-Coherence-Enhancing Diffusion Filtering for Matrix Fields -- Structural Adaptive Smoothing: Principles and Applications in Imaging -- SPD Tensors Regularization via Iwasawa Decomposition -- Sparse Representation of Video Data by Adaptive Tetrahedralizations -- Continuous Diffusion Wavelet Transforms and Scale Space over Euclidean Spaces and Noncommutative Lie Groups -- Left Invariant Evolution Equations on Gabor Transforms -- Scale Space Representations Locally Adapted to the Geometry of Base and Target Manifold -- An A Priori Model of Line Propagation -- Local Statistics on Shape Diffeomorphisms using a Depth Potential Function -- Preserving Time Structures while Denoising a Dynamical Image -- Interacting Adaptive Filters for Multiple Objects Detection -- Visual Data Recognition and Modeling based on Local Markovian Models -- Locally Specified Polygonal Markov Fields for Image Segmentation -- Regularization with Approximated L2 Maximum Entropy Method.  . 
520 |a Mathematical Methods for Signal and Image Analysis and Representation presents the mathematical methodology for generic image analysis tasks. In the context of this book an image may be any m-dimensional empirical signal living on an n-dimensional smooth manifold (typically, but not necessarily, a subset of spacetime). The existing literature on image methodology is rather scattered and often limited to either a deterministic or a statistical point of view. In contrast, this book brings together these seemingly different points of view in order to stress their conceptual relations and formal analogies. Furthermore, it does not focus on specific applications, although some are detailed for the sake of illustration, but on the methodological frameworks on which such applications are built, making it an ideal companion for those seeking a rigorous methodological basis for specific algorithms as well as for those interested in the fundamental methodology per se. Covering many topics at the forefront of current research, including anisotropic diffusion filtering of tensor fields, this book will be of particular interest to graduate and postgraduate students and researchers in the fields of computer vision, medical imaging and visual perception. 
650 0 |a Mathematics. 
650 0 |a Computer vision. 
650 0 |a Computer science-Mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Computer Vision. 
650 2 4 |a Mathematical Applications in Computer Science. 
700 1 |a Florack, Luc.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Duits, Remco.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Jongbloed, Geurt.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a van Lieshout, Marie-Colette.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Davies, Laurie.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781447158905 
776 0 8 |i Printed edition:  |z 9781447123521 
776 0 8 |i Printed edition:  |z 9781447123545 
830 0 |a Computational Imaging and Vision ;  |v 41 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4471-2353-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)