Cargando…

Stochastic Systems Uncertainty Quantification and Propagation /

Uncertainty is an inherent feature of both properties of physical systems and the inputs to these systems that needs to be quantified for cost effective and reliable designs. The states of these systems satisfy equations with random entries, referred to as stochastic equations, so that they are rand...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Grigoriu, Mircea (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:Springer Series in Reliability Engineering,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4471-2327-9
003 DE-He213
005 20220116013959.0
007 cr nn 008mamaa
008 120514s2012 xxk| s |||| 0|eng d
020 |a 9781447123279  |9 978-1-4471-2327-9 
024 7 |a 10.1007/978-1-4471-2327-9  |2 doi 
050 4 |a TH9701-9745 
072 7 |a TNKS  |2 bicssc 
072 7 |a TEC032000  |2 bisacsh 
072 7 |a TNKS  |2 thema 
082 0 4 |a 621  |2 23 
100 1 |a Grigoriu, Mircea.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Stochastic Systems  |h [electronic resource] :  |b Uncertainty Quantification and Propagation /  |c by Mircea Grigoriu. 
250 |a 1st ed. 2012. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2012. 
300 |a XII, 532 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Reliability Engineering,  |x 2196-999X 
505 0 |a Probability Essentials -- Random Functions -- Probabilistic Models -- Stochastic Integrals and Itô's Formula -- Properties of Solutions of Stochastic Equations -- Stochastic Equations with Small Uncertainty -- Stochastic Algebraic Equations -- Stochastic Differential Equations with Deterministic Coefficients -- Stochastic Differential Equations with Random Coefficients. 
520 |a Uncertainty is an inherent feature of both properties of physical systems and the inputs to these systems that needs to be quantified for cost effective and reliable designs. The states of these systems satisfy equations with random entries, referred to as stochastic equations, so that they are random functions of time and/or space. The solution of stochastic equations poses notable technical difficulties that are frequently circumvented by heuristic assumptions at the expense of accuracy and rigor. The main objective of Stochastic Systems is to promoting the development of accurate and efficient methods for solving stochastic equations and to foster interactions between engineers, scientists, and mathematicians. To achieve these objectives Stochastic Systems presents: ·         A clear and brief review of essential concepts on probability theory, random functions, stochastic calculus, Monte Carlo simulation, and functional analysis   ·          Probabilistic models for random variables and functions needed to formulate stochastic equations describing realistic problems in engineering and applied sciences   ·          Practical methods for quantifying the uncertain parameters in the definition of stochastic equations, solving approximately these equations, and assessing the accuracy of approximate solutions   Stochastic Systems provides key information for researchers, graduate students, and engineers who are interested in the formulation and solution of stochastic problems encountered in a broad range of disciplines. Numerous examples are used to clarify and illustrate theoretical concepts and methods for solving stochastic equations. The extensive bibliography and index at the end of the book constitute an ideal resource for both theoreticians and practitioners. 
650 0 |a Security systems. 
650 0 |a Probabilities. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 1 4 |a Security Science and Technology. 
650 2 4 |a Probability Theory. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781447123262 
776 0 8 |i Printed edition:  |z 9781447123286 
776 0 8 |i Printed edition:  |z 9781447159483 
830 0 |a Springer Series in Reliability Engineering,  |x 2196-999X 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4471-2327-9  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)