Cargando…

Syzygies and Homotopy Theory

The most important invariant of a topological space is its fundamental group. When this is trivial, the resulting homotopy theory is well researched and familiar. In the general case, however, homotopy theory over nontrivial fundamental groups is much more problematic and far less well understood. S...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Johnson, F.E.A (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:Algebra and Applications, 17
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4471-2294-4
003 DE-He213
005 20220126101722.0
007 cr nn 008mamaa
008 111116s2012 xxk| s |||| 0|eng d
020 |a 9781447122944  |9 978-1-4471-2294-4 
024 7 |a 10.1007/978-1-4471-2294-4  |2 doi 
050 4 |a QA174-183 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBG  |2 thema 
082 0 4 |a 512.2  |2 23 
100 1 |a Johnson, F.E.A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Syzygies and Homotopy Theory  |h [electronic resource] /  |c by F.E.A. Johnson. 
250 |a 1st ed. 2012. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2012. 
300 |a XXIV, 296 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Algebra and Applications,  |x 2192-2950 ;  |v 17 
505 0 |a Preliminaries -- The restricted linear group -- The calculus of corners and squares -- Extensions of modules -- The derived module category -- Finiteness conditions -- The Swan mapping -- Classification of algebraic complexes -- Rings with stably free cancellation -- Group rings of cyclic groups -- Group rings of dihedral groups -- Group rings of quaternionic groups -- Parametrizing W1 (Z) : generic case -- Parametrizing W1 (Z) : singular case -- Generalized Swan modules -- Parametrizing W1 (Z) : G = C¥ ´ F -- Conclusion . 
520 |a The most important invariant of a topological space is its fundamental group. When this is trivial, the resulting homotopy theory is well researched and familiar. In the general case, however, homotopy theory over nontrivial fundamental groups is much more problematic and far less well understood. Syzygies and Homotopy Theory explores the problem of nonsimply connected homotopy in the first nontrivial cases and presents, for the first time, a systematic rehabilitation of Hilbert's method of syzygies in the context of non-simply connected homotopy theory. The first part of the book is theoretical, formulated to allow a general finitely presented group as a fundamental group. The innovation here is to regard syzygies as stable modules rather than minimal modules. Inevitably this forces a reconsideration of the problems of noncancellation; these are confronted in the second, practical, part of the book. In particular, the second part of the book considers how the theory works out in detail for the specific examples Fn ´F where Fn is a free group of rank n and F is finite. Another innovation is to parametrize the first syzygy in terms of the more familiar class of stably free modules. Furthermore, detailed description of these stably free modules is effected by a suitable modification of the method of Milnor squares. The theory developed within this book has potential applications in various branches of algebra, including homological algebra, ring theory and K-theory. Syzygies and Homotopy Theory will be of interest to researchers and also to graduate students with a background in algebra and algebraic topology. 
650 0 |a Group theory. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 1 4 |a Group Theory and Generalizations. 
650 2 4 |a Commutative Rings and Algebras. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781447158127 
776 0 8 |i Printed edition:  |z 9781447122937 
776 0 8 |i Printed edition:  |z 9781447122951 
830 0 |a Algebra and Applications,  |x 2192-2950 ;  |v 17 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4471-2294-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)