Cargando…

Traffic-Sign Recognition Systems

This work presents a full generic approach to the detection and recognition of traffic signs. The approach, originally developed for a mobile mapping application, is based on the latest computer vision methods for object detection, and on powerful methods for multiclass classification. The challenge...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Escalera, Sergio (Autor), Baró, Xavier (Autor), Pujol, Oriol (Autor), Vitrià, Jordi (Autor), Radeva, Petia (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:SpringerBriefs in Computer Science,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4471-2245-6
003 DE-He213
005 20220119232414.0
007 cr nn 008mamaa
008 110921s2011 xxk| s |||| 0|eng d
020 |a 9781447122456  |9 978-1-4471-2245-6 
024 7 |a 10.1007/978-1-4471-2245-6  |2 doi 
050 4 |a TA1634 
072 7 |a UYQV  |2 bicssc 
072 7 |a COM012000  |2 bisacsh 
072 7 |a UYQV  |2 thema 
082 0 4 |a 006.37  |2 23 
100 1 |a Escalera, Sergio.  |e author.  |0 (orcid)0000-0003-0617-8873  |1 https://orcid.org/0000-0003-0617-8873  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Traffic-Sign Recognition Systems  |h [electronic resource] /  |c by Sergio Escalera, Xavier Baró, Oriol Pujol, Jordi Vitrià, Petia Radeva. 
250 |a 1st ed. 2011. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2011. 
300 |a VI, 96 p. 34 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5776 
505 0 |a Introduction -- Background on Traffic Sign Detection and Recognition -- Traffic Sign Detection -- Traffic Sign Categorization -- Traffic Sign Detection and Recognition System -- Conclusions. 
520 |a This work presents a full generic approach to the detection and recognition of traffic signs. The approach, originally developed for a mobile mapping application, is based on the latest computer vision methods for object detection, and on powerful methods for multiclass classification. The challenge was to robustly detect a set of different sign classes in real time, and to classify each detected sign into a large, extensible set of classes. To address this challenge, several state-of-the-art methods were developed that can be used for different recognition problems. Following an introduction to the problems of traffic sign detection and categorization, the text focuses on the problem of detection, and presents recent developments in this field. The text then surveys a specific methodology for the problem of traffic sign categorization - Error-Correcting Output Codes - and presents several algorithms, performing experimental validation on a mobile mapping application. The work ends with a discussion on future lines of research, and continuing challenges for traffic sign recognition. 
650 0 |a Computer vision. 
650 1 4 |a Computer Vision. 
700 1 |a Baró, Xavier.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Pujol, Oriol.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Vitrià, Jordi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Radeva, Petia.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781447122449 
776 0 8 |i Printed edition:  |z 9781447122463 
830 0 |a SpringerBriefs in Computer Science,  |x 2191-5776 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4471-2245-6  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)