Cargando…

Mathematical Logic and Model Theory A Brief Introduction /

Mathematical Logic and Model Theory: A Brief Introduction offers a streamlined yet easy-to-read introduction to mathematical logic and basic model theory. It presents, in a self-contained manner, the essential aspects of model theory needed to understand model theoretic algebra. As a profound applic...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Prestel, Alexander (Autor), Delzell, Charles N. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Universitext,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4471-2176-3
003 DE-He213
005 20220118014553.0
007 cr nn 008mamaa
008 110822s2011 xxk| s |||| 0|eng d
020 |a 9781447121763  |9 978-1-4471-2176-3 
024 7 |a 10.1007/978-1-4471-2176-3  |2 doi 
050 4 |a QA1-939 
072 7 |a PB  |2 bicssc 
072 7 |a MAT000000  |2 bisacsh 
072 7 |a PB  |2 thema 
082 0 4 |a 510  |2 23 
100 1 |a Prestel, Alexander.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Mathematical Logic and Model Theory  |h [electronic resource] :  |b A Brief Introduction /  |c by Alexander Prestel, Charles N. Delzell. 
250 |a 1st ed. 2011. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2011. 
300 |a X, 194 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 2191-6675 
505 0 |a First-Order Logic -- Model Constructions -- Properties of Model Classes -- Model Theory of Several Algebraic Theories. 
520 |a Mathematical Logic and Model Theory: A Brief Introduction offers a streamlined yet easy-to-read introduction to mathematical logic and basic model theory. It presents, in a self-contained manner, the essential aspects of model theory needed to understand model theoretic algebra. As a profound application of model theory in algebra, the last part of this book develops a complete proof of Ax and Kochen's work on Artin's conjecture about Diophantine properties of p-adic number fields. The character of model theoretic constructions and results differs significantly from that commonly found in algebra, by the treatment of formulae as mathematical objects. It is therefore indispensable to first become familiar with the problems and methods of mathematical logic.  Therefore, the text is divided into three parts: an introduction into mathematical logic (Chapter 1), model theory (Chapters 2 and 3), and the model theoretic treatment of several algebraic theories (Chapter 4). This book will be of interest to both advanced undergraduate and graduate students studying model theory and its applications to algebra. It may also be used for self-study. 
650 0 |a Mathematics. 
650 0 |a Machine theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Formal Languages and Automata Theory. 
700 1 |a Delzell, Charles N.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781447121756 
776 0 8 |i Printed edition:  |z 9781447121770 
776 0 8 |i Printed edition:  |z 9781447174653 
830 0 |a Universitext,  |x 2191-6675 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4471-2176-3  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)