Cargando…

Linear Chaos

It is commonly believed that chaos is linked to non-linearity, however many (even quite natural) linear dynamical systems exhibit chaotic behavior. The study of these systems is a young and remarkably active field of research, which has seen many landmark results over the past two decades. Linear dy...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Grosse-Erdmann, Karl-G (Autor), Peris Manguillot, Alfred (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Universitext,
Temas:
Acceso en línea:Texto Completo
Tabla de Contenidos:
  • Topological dynamics
  • Hypercyclic and chaotic operators
  • The Hypercyclicity Criterion
  • Classes of hypercyclic and chaotic operators
  • Necessary conditions for hypercyclicity and chaos
  • Connectedness arguments in linear dynamics
  • Dynamics of semigroups, with applications to differential equations
  • Existence of hypercyclic operators
  • Frequently hypercyclic operators
  • Hypercyclic subspaces
  • Common hypercyclic vectors
  • Linear dynamics in topological vector spaces.