Knots and Primes An Introduction to Arithmetic Topology /
This is a foundation for arithmetic topology - a new branch of mathematics which is focused upon the analogy between knot theory and number theory. Starting with an informative introduction to its origins, namely Gauss, this text provides a background on knots, three manifolds and number fields. Co...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Autor Corporativo: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London :
Springer London : Imprint: Springer,
2012.
|
Edición: | 1st ed. 2012. |
Colección: | Universitext,
|
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- Preliminaries - Fundamental Groups and Galois Groups
- Knots and Primes, 3-Manifolds and Number Rings
- Linking Numbers and Legendre Symbols
- Decompositions of Knots and Primes
- Homology Groups and Ideal Class Groups I - Genus Theory
- Link Groups and Galois Groups with Restricted Ramification
- Milnor Invariants and Multiple Power Residue Symbols
- Alexander Modules and Iwasawa Modules
- Homology Groups and Ideal Class Groups II - Higher Order Genus Theory
- Homology Groups and Ideal Class Groups III - Asymptotic Formulas
- Torsions and the Iwasawa Main Conjecture
- Moduli Spaces of Representations of Knot and Prime Groups
- Deformations of Hyperbolic Structures and of p-adic Ordinary Modular Forms.