Cargando…

Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition

Aside from distribution theory, projections and the singular value decomposition (SVD) are the two most important concepts for understanding the basic mechanism of multivariate analysis. The former underlies the least squares estimation in regression analysis, which is essentially a projection of on...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Yanai, Haruo (Autor), Takeuchi, Kei (Autor), Takane, Yoshio (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Statistics for Social and Behavioral Sciences,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4419-9887-3
003 DE-He213
005 20220116020918.0
007 cr nn 008mamaa
008 110406s2011 xxu| s |||| 0|eng d
020 |a 9781441998873  |9 978-1-4419-9887-3 
024 7 |a 10.1007/978-1-4419-9887-3  |2 doi 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Yanai, Haruo.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition  |h [electronic resource] /  |c by Haruo Yanai, Kei Takeuchi, Yoshio Takane. 
250 |a 1st ed. 2011. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2011. 
300 |a XII, 236 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Statistics for Social and Behavioral Sciences,  |x 2199-7365 
505 0 |a Fundamentals of Linear Algebra -- Projection Matrices -- Generalized Inverse Matrices -- Explicit Representations -- Singular Value Decomposition (SVD) -- Various Applications. 
520 |a Aside from distribution theory, projections and the singular value decomposition (SVD) are the two most important concepts for understanding the basic mechanism of multivariate analysis. The former underlies the least squares estimation in regression analysis, which is essentially a projection of one subspace onto another, and the latter underlies principal component analysis, which seeks to find a subspace that captures the largest variability in the original space. This book is about projections and SVD. A thorough discussion of generalized inverse (g-inverse) matrices is also given because it is closely related to the former. The book provides systematic and in-depth accounts of these concepts from a unified viewpoint of linear transformations finite dimensional vector spaces. More specially, it shows that projection matrices (projectors) and g-inverse matrices can be defined in various ways so that a vector space is decomposed into a direct-sum of (disjoint) subspaces. Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition will be useful for researchers, practitioners, and students in applied mathematics, statistics, engineering, behaviormetrics, and other fields. 
650 0 |a Statistics . 
650 0 |a Biometry. 
650 1 4 |a Statistics. 
650 2 4 |a Biostatistics. 
700 1 |a Takeuchi, Kei.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Takane, Yoshio.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781461428596 
776 0 8 |i Printed edition:  |z 9781441998866 
776 0 8 |i Printed edition:  |z 9781441998880 
830 0 |a Statistics for Social and Behavioral Sciences,  |x 2199-7365 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4419-9887-3  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)