Cargando…

Robust Data Mining

Data uncertainty is a concept closely related with most real life applications that involve data collection and interpretation. Examples can be found in data acquired with biomedical instruments or other experimental techniques. Integration of robust optimization in the existing data mining techniqu...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Xanthopoulos, Petros (Autor), Pardalos, Panos M. (Autor), Trafalis, Theodore B. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:SpringerBriefs in Optimization,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4419-9878-1
003 DE-He213
005 20220119202731.0
007 cr nn 008mamaa
008 121120s2013 xxu| s |||| 0|eng d
020 |a 9781441998781  |9 978-1-4419-9878-1 
024 7 |a 10.1007/978-1-4419-9878-1  |2 doi 
050 4 |a QA402.5-402.6 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBU  |2 thema 
082 0 4 |a 519.6  |2 23 
100 1 |a Xanthopoulos, Petros.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Robust Data Mining  |h [electronic resource] /  |c by Petros Xanthopoulos, Panos M. Pardalos, Theodore B. Trafalis. 
250 |a 1st ed. 2013. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a XII, 59 p. 6 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Optimization,  |x 2191-575X 
505 0 |a 1. Introduction -- 2. Least Squares Problems -- 3. Principal Component Analysis -- 4. Linear Discriminant Analysis -- 5. Support Vector Machines -- 6. Conclusion. 
520 |a Data uncertainty is a concept closely related with most real life applications that involve data collection and interpretation. Examples can be found in data acquired with biomedical instruments or other experimental techniques. Integration of robust optimization in the existing data mining techniques aim to create new algorithms resilient to error and noise. This work encapsulates all the latest applications of robust optimization in data mining. This brief contains an overview of the rapidly growing field of robust data mining research field and presents  the most well known machine learning algorithms, their robust counterpart formulations and algorithms for attacking these problems. This brief will appeal to theoreticians and data miners working in this field. 
650 0 |a Mathematical optimization. 
650 0 |a Data mining. 
650 0 |a Software engineering. 
650 1 4 |a Optimization. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Software Engineering. 
700 1 |a Pardalos, Panos M.  |e author.  |0 (orcid)0000-0003-2824-101X  |1 https://orcid.org/0000-0003-2824-101X  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Trafalis, Theodore B.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781441998798 
776 0 8 |i Printed edition:  |z 9781441998774 
830 0 |a SpringerBriefs in Optimization,  |x 2191-575X 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4419-9878-1  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)