Cargando…

Robust Data Mining

Data uncertainty is a concept closely related with most real life applications that involve data collection and interpretation. Examples can be found in data acquired with biomedical instruments or other experimental techniques. Integration of robust optimization in the existing data mining techniqu...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Xanthopoulos, Petros (Autor), Pardalos, Panos M. (Autor), Trafalis, Theodore B. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:SpringerBriefs in Optimization,
Temas:
Acceso en línea:Texto Completo
Descripción
Sumario:Data uncertainty is a concept closely related with most real life applications that involve data collection and interpretation. Examples can be found in data acquired with biomedical instruments or other experimental techniques. Integration of robust optimization in the existing data mining techniques aim to create new algorithms resilient to error and noise. This work encapsulates all the latest applications of robust optimization in data mining. This brief contains an overview of the rapidly growing field of robust data mining research field and presents  the most well known machine learning algorithms, their robust counterpart formulations and algorithms for attacking these problems. This brief will appeal to theoreticians and data miners working in this field.
Descripción Física:XII, 59 p. 6 illus. online resource.
ISBN:9781441998781
ISSN:2191-575X