Cargando…

Targeted Learning Causal Inference for Observational and Experimental Data /

The statistics profession is at a unique point in history. The need for valid statistical tools is greater than ever; data sets are massive, often measuring hundreds of thousands of measurements for a single subject. The field is ready to move towards clear objective benchmarks under which tools can...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: van der Laan, Mark J. (Autor), Rose, Sherri (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Springer Series in Statistics,
Temas:
Acceso en línea:Texto Completo
Tabla de Contenidos:
  • Models, Inference, and Truth
  • The Open Problem
  • Defining the Model and Parameter
  • Super Learning
  • Introduction to TMLE
  • Understanding TMLE
  • Why TMLE?
  • Bounded Continuous Outcomes
  • Direct Effects and Effect Among the Treated
  • Marginal Structural Models
  • Positivity
  • Robust Analysis of RCTs Using Generalized Linear Models
  • Targeted ANCOVA Estimator in RCTs
  • Independent Case-Control Studies
  • Why Match? Matched Case-Control Studies
  • Nested Case-Control Risk Score Prediction
  • Super Learning for Right-Censored Data
  • RCTs with Time-to-Event Outcomes
  • RCTs with Time-to-Event Outcomes and Effect Modification Parameters
  • C-TMLE of an Additive Point Treatment Effect
  • C-TMLE for Time-to-Event Outcomes
  • Propensity-Score-Based Estimators and C-TMLE
  • Targeted Methods for Biomarker Discovery
  • Finding Quantitative Trait Loci Genes
  • Case Study: Longitudinal HIV Cohort Data
  • Probability of Success of an In Vitro Fertilization Program
  • Individualized Antiretroviral Initiation Rules
  • Cross-Validated Targeted Minimum-Loss-Based Estimation
  • Targeted Bayesian Learning
  • TMLE in Adaptive Group Sequential Covariate Adjusted RCTs
  • Foundations of TMLE
  • Introduction to R Code Implementation.