Cargando…

Learning in Non-Stationary Environments Methods and Applications /

Recent decades have seen rapid advances in automatization processes, supported by modern machines and computers. The result is significant increases in system complexity and state changes, information sources, the need for faster data handling and the integration of environmental influences. Intelli...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Sayed-Mouchaweh, Moamar (Editor ), Lughofer, Edwin (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4419-8020-5
003 DE-He213
005 20220117053054.0
007 cr nn 008mamaa
008 120412s2012 xxu| s |||| 0|eng d
020 |a 9781441980205  |9 978-1-4419-8020-5 
024 7 |a 10.1007/978-1-4419-8020-5  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Learning in Non-Stationary Environments  |h [electronic resource] :  |b Methods and Applications /  |c edited by Moamar Sayed-Mouchaweh, Edwin Lughofer. 
250 |a 1st ed. 2012. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2012. 
300 |a XII, 440 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Prologue -- Part I: Dynamic Methods for Unsupervised Learning Problems -- Incremental Statistical Measures -- A Granular Description of Data: A Study in Evolvable Systems -- Incremental Spectral Clustering -- Part II: Dynamic Methods for Supervised Classification Problems -- Semi-Supervised Dynamic Fuzzy K-Nearest Neighbors -- Making Early Predictions of the Accuracy of Machine Learning Classifiers -- Incremental Classifier Fusion and its Applications in Industrial Monotiroing and Diagnostics -- Instance-Based Classification and Regression on Data Streams -- Part III: Dynamic Methods for Supervised Regression Problems -- Flexible Evolving Fuzzy Inference Systems from Data Streams (FLEXFIS++) -- Sequential Adaptive Fuzzy Inference System for Function Approximation Problems -- Interval Approach for Evolving Granular System Modeling -- Part IV: Applications of Learning in Non-Stationary Environments -- Dynamic Learning in Multiple Time-Series in a Non-Stationary Environmenty -- Optimizing Feature Calculation in Adaptive Machine Vision Systems -- On-line Quality Contol with Flexible Evolving Fuzzy Systems -- Identification of a Class of Hybrid Dynamic Systems. 
520 |a Recent decades have seen rapid advances in automatization processes, supported by modern machines and computers. The result is significant increases in system complexity and state changes, information sources, the need for faster data handling and the integration of environmental influences. Intelligent systems, equipped with a taxonomy of data-driven system identification and machine learning algorithms, can handle these problems partially. Conventional learning algorithms in a batch off-line setting fail whenever dynamic changes of the process appear due to non-stationary environments and external influences.   Learning in Non-Stationary Environments: Methods and Applications offers a wide-ranging, comprehensive review of recent developments and important methodologies in the field. The coverage focuses on dynamic learning in unsupervised problems, dynamic learning in supervised classification and dynamic learning in supervised regression problems. A later section is dedicated to applications in which dynamic learning methods serve as keystones for achieving models with high accuracy.   Rather than rely on a mathematical theorem/proof style, the editors highlight numerous figures, tables, examples and applications, together with their explanations.   This approach offers a useful basis for further investigation and fresh ideas and motivates and inspires newcomers to explore this promising and still emerging field of research.  . 
650 0 |a Computational intelligence. 
650 0 |a Data mining. 
650 0 |a Pattern recognition systems. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Automated Pattern Recognition. 
700 1 |a Sayed-Mouchaweh, Moamar.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Lughofer, Edwin.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781489993403 
776 0 8 |i Printed edition:  |z 9781441980199 
776 0 8 |i Printed edition:  |z 9781441980212 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4419-8020-5  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)