Cargando…

Inductive Databases and Constraint-Based Data Mining

This book is about inductive databases and constraint-based data mining, emerging research topics lying at the intersection of data mining and database research. The aim of the book as to provide an overview of the state-of- the art in this novel and - citing research area. Of special interest are t...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Džeroski, Sašo (Editor ), Goethals, Bart (Editor ), Panov, Panče (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2010.
Edición:1st ed. 2010.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4419-7738-0
003 DE-He213
005 20220114180807.0
007 cr nn 008mamaa
008 101118s2010 xxu| s |||| 0|eng d
020 |a 9781441977380  |9 978-1-4419-7738-0 
024 7 |a 10.1007/978-1-4419-7738-0  |2 doi 
050 4 |a QA76.9.D3 
072 7 |a UN  |2 bicssc 
072 7 |a COM021000  |2 bisacsh 
072 7 |a UN  |2 thema 
082 0 4 |a 005.74  |2 23 
245 1 0 |a Inductive Databases and Constraint-Based Data Mining  |h [electronic resource] /  |c edited by Sašo Džeroski, Bart Goethals, Panče Panov. 
250 |a 1st ed. 2010. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2010. 
300 |a XVII, 456 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Inductive Databases and Constraint-based Data Mining: Introduction and Overview -- Representing Entities in the OntoDM Data Mining Ontology -- A Practical Comparative Study Of Data Mining Query Languages -- A Theory of Inductive Query Answering -- Constraint-based Mining: Selected Techniques -- Generalizing Itemset Mining in a Constraint Programming Setting -- From Local Patterns to Classification Models -- Constrained Predictive Clustering -- Finding Segmentations of Sequences -- Mining Constrained Cross-Graph Cliques in Dynamic Networks -- Probabilistic Inductive Querying Using ProbLog -- Inductive Databases: Integration Approaches -- Inductive Querying with Virtual Mining Views -- SINDBAD and SiQL: Overview, Applications and Future Developments -- Patterns on Queries -- Experiment Databases -- Applications -- Predicting Gene Function using Predictive Clustering Trees -- Analyzing Gene Expression Data with Predictive Clustering Trees -- Using a Solver Over the String Pattern Domain to Analyze Gene Promoter Sequences -- Inductive Queries for a Drug Designing Robot Scientist. 
520 |a This book is about inductive databases and constraint-based data mining, emerging research topics lying at the intersection of data mining and database research. The aim of the book as to provide an overview of the state-of- the art in this novel and - citing research area. Of special interest are the recent methods for constraint-based mining of global models for prediction and clustering, the uni?cation of pattern mining approaches through constraint programming, the clari?cation of the re- tionship between mining local patterns and global models, and the proposed in- grative frameworks and approaches for inducive databases. On the application side, applications to practically relevant problems from bioinformatics are presented. Inductive databases (IDBs) represent a database view on data mining and kno- edge discovery. IDBs contain not only data, but also generalizations (patterns and models) valid in the data. In an IDB, ordinary queries can be used to access and - nipulate data, while inductive queries can be used to generate (mine), manipulate, and apply patterns and models. In the IDB framework, patterns and models become "?rst-class citizens" and KDD becomes an extended querying process in which both the data and the patterns/models that hold in the data are queried. 
650 0 |a Database management. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 0 |a Bioinformatics. 
650 1 4 |a Database Management. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Computational and Systems Biology. 
700 1 |a Džeroski, Sašo.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Goethals, Bart.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Panov, Panče.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781441977373 
776 0 8 |i Printed edition:  |z 9781489982179 
776 0 8 |i Printed edition:  |z 9781441977397 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4419-7738-0  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)