Cargando…

Introduction to Homotopy Theory

This is a book in pure mathematics dealing with homotopy theory, one of the main branches of algebraic topology. The principal topics are as follows: • Basic homotopy; • H-spaces and co-H-spaces; • Fibrations and cofibrations; • Exact sequences of homotopy sets, actions, and coactions; • Homotopy pu...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Arkowitz, Martin (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Universitext,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4419-7329-0
003 DE-He213
005 20220118151424.0
007 cr nn 008mamaa
008 110714s2011 xxu| s |||| 0|eng d
020 |a 9781441973290  |9 978-1-4419-7329-0 
024 7 |a 10.1007/978-1-4419-7329-0  |2 doi 
050 4 |a QA612-612.8 
072 7 |a PBPD  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
072 7 |a PBPD  |2 thema 
082 0 4 |a 514.2  |2 23 
100 1 |a Arkowitz, Martin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Introduction to Homotopy Theory  |h [electronic resource] /  |c by Martin Arkowitz. 
250 |a 1st ed. 2011. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2011. 
300 |a XIII, 344 p. 333 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 2191-6675 
505 0 |a 1 Basic Homotopy -- 2 H-Spaces and Co-H-Spaces -- 3 Cofibrations and Fibrations -- 4 Exact Sequences -- 5 Applications of Exactness -- 6 Homotopy Pushouts and Pullbacks -- 7 Homotopy and Homology Decompositions -- 8 Homotopy Sets -- 9 Obstruction Theory -- A Point-Set Topology -- B The Fundamental Group -- C Homology and Cohomology -- D Homotopy Groups and the n-Sphere -- E Homotopy Pushouts and Pullbacks -- F Categories and Functors -- Hints to Some of the Exercises -- References -- Index.-. 
520 |a This is a book in pure mathematics dealing with homotopy theory, one of the main branches of algebraic topology. The principal topics are as follows: • Basic homotopy; • H-spaces and co-H-spaces; • Fibrations and cofibrations; • Exact sequences of homotopy sets, actions, and coactions; • Homotopy pushouts and pullbacks; • Classical theorems, including those of Serre, Hurewicz, Blakers-Massey, and Whitehead; • Homotopy sets; • Homotopy and homology decompositions of spaces and maps; and • Obstruction theory. The underlying theme of the entire book is the Eckmann-Hilton duality theory. This approach provides a unifying motif, clarifies many concepts, and reduces the amount of repetitious material. The subject matter is treated carefully with attention to detail, motivation is given for many results, there are several illustrations, and there are a large number of exercises of varying degrees of difficulty. It is assumed that the reader has had some exposure to the rudiments of homology theory and fundamental group theory; these topics are discussed in the appendices. The book can be used as a text for the second semester of an algebraic topology course. The intended audience of this book is advanced undergraduate or graduate students. The book could also be used by anyone with a little background in topology who wishes to learn some homotopy theory. 
650 0 |a Algebraic topology. 
650 1 4 |a Algebraic Topology. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781441973283 
776 0 8 |i Printed edition:  |z 9781441973306 
830 0 |a Universitext,  |x 2191-6675 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4419-7329-0  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)