Cargando…

Statistical Image Processing and Multidimensional Modeling

Images are all around us! The proliferation of low-cost, high-quality imaging devices has led to an explosion in acquired images. When these images are acquired from a microscope, telescope, satellite, or medical imaging device, there is a statistical image processing task: the inference of somethin...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Fieguth, Paul (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Information Science and Statistics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4419-7294-1
003 DE-He213
005 20220113125143.0
007 cr nn 008mamaa
008 101029s2011 xxu| s |||| 0|eng d
020 |a 9781441972941  |9 978-1-4419-7294-1 
024 7 |a 10.1007/978-1-4419-7294-1  |2 doi 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519  |2 23 
100 1 |a Fieguth, Paul.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Statistical Image Processing and Multidimensional Modeling  |h [electronic resource] /  |c by Paul Fieguth. 
250 |a 1st ed. 2011. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2011. 
300 |a XXII, 454 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Information Science and Statistics,  |x 2197-4128 
505 0 |a Introduction -- Inverse problems -- Static estimation and sampling -- Dynamic estimation and sampling -- multidimensional modelling -- Markov random fields -- Hidden markov models -- Changes of basis -- Linear systems estimation -- Kalman filtering and domain decomposition -- Sampling and monte carlo methods. 
520 |a Images are all around us! The proliferation of low-cost, high-quality imaging devices has led to an explosion in acquired images. When these images are acquired from a microscope, telescope, satellite, or medical imaging device, there is a statistical image processing task: the inference of something-an artery, a road, a DNA marker, an oil spill-from imagery, possibly noisy, blurry, or incomplete. A great many textbooks have been written on image processing. However this book does not so much focus on images, per se, but rather on spatial data sets, with one or more measurements taken over a two or higher dimensional space, and to which standard image-processing algorithms may not apply. There are many important data analysis methods developed in this text for such statistical image problems. Examples abound throughout remote sensing (satellite data mapping, data assimilation, climate-change studies, land use), medical imaging (organ segmentation, anomaly detection), computer vision (image classification, segmentation), and other 2D/3D problems (biological imaging, porous media). The goal, then, of this text is to address methods for solving multidimensional statistical problems. The text strikes a balance between mathematics and theory on the one hand, versus applications and algorithms on the other, by deliberately developing the basic theory (Part I), the mathematical modeling (Part II), and the algorithmic and numerical methods (Part III) of solving a given problem. The particular emphases of the book include inverse problems, multidimensional modeling, random fields, and hierarchical methods. Paul Fieguth is a professor in Systems Design Engineering at the University of Waterloo in Ontario, Canada. He has longstanding research interests in statistical signal and image processing, hierarchical algorithms, data fusion, and the interdisciplinary applications of such methods, particularly to problems in medical imaging, remote sensing, and scientific imaging. 
650 0 |a Statistics . 
650 0 |a Computer science-Mathematics. 
650 0 |a Mathematical statistics. 
650 0 |a Probabilities. 
650 0 |a Computer vision. 
650 0 |a Signal processing. 
650 1 4 |a Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
650 2 4 |a Probability and Statistics in Computer Science. 
650 2 4 |a Probability Theory. 
650 2 4 |a Computer Vision. 
650 2 4 |a Signal, Speech and Image Processing . 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781441972934 
776 0 8 |i Printed edition:  |z 9781461427056 
776 0 8 |i Printed edition:  |z 9781441972958 
830 0 |a Information Science and Statistics,  |x 2197-4128 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4419-7294-1  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)