Cargando…

Regression with Linear Predictors

This text provides, in a non-technical language, a unified treatment of regression models for different outcome types, such as linear regression, logistic regression, and Cox regression. This is done by focusing on the many common aspects of these models, in particular the linear predictor, which co...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Andersen, Per Kragh (Autor), Skovgaard, Lene Theil (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2010.
Edición:1st ed. 2010.
Colección:Statistics for Biology and Health,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4419-7170-8
003 DE-He213
005 20220114072132.0
007 cr nn 008mamaa
008 100715s2010 xxu| s |||| 0|eng d
020 |a 9781441971708  |9 978-1-4419-7170-8 
024 7 |a 10.1007/978-1-4419-7170-8  |2 doi 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Andersen, Per Kragh.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Regression with Linear Predictors  |h [electronic resource] /  |c by Per Kragh Andersen, Lene Theil Skovgaard. 
250 |a 1st ed. 2010. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2010. 
300 |a IX, 494 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Statistics for Biology and Health,  |x 2197-5671 
505 0 |a Statistical models -- One categorical covariate -- One quantitative covariate -- Multiple regression, the linear predictor -- Model building: From purpose to conclusion -- Alternative outcome types and link functions -- Further topics. 
520 |a This text provides, in a non-technical language, a unified treatment of regression models for different outcome types, such as linear regression, logistic regression, and Cox regression. This is done by focusing on the many common aspects of these models, in particular the linear predictor, which combines the effects of all explanatory variables into a function which is linear in the unknown parameters. Specification and interpretation of various choices of parametrization of the effects of the covariates (categorical as well as quantitative) and interaction among these are elaborated upon. The merits and drawbacks of different link functions relating the linear predictor to the outcome are discussed with an emphasis on interpretational issues, and the fact that different research questions arise from adding or deleting covariates from the model is emphasized in both theory and practice. Regression models with a linear predictor are commonly used in fields such as clinical medicine, epidemiology, and public health, and the book, including its many worked examples, builds on the authors' more than thirty years of experience as teachers, researchers and consultants at a biostatistical department. The book is well-suited for readers without a solid mathematical background and is accompanied by Web pages documenting in R, SAS, and STATA, the analyses presented throughout the text. The authors are since 1978 affiliated with the Department of Biostatistics, University of Copenhagen. Per Kragh Andersen is professor; he is a co-author of the Springer book "Statistical Models Based on Counting Processes," and has served on editorial boards on several statistical journals. Lene Theil Skovgaard is associate professor; she has considerable experience as teacher and consultant, and has served on the editorial board of Biometrics. 
650 0 |a Statistics . 
650 0 |a Biometry. 
650 1 4 |a Statistical Theory and Methods. 
650 2 4 |a Biostatistics. 
700 1 |a Skovgaard, Lene Theil.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781441971692 
776 0 8 |i Printed edition:  |z 9781441971715 
776 0 8 |i Printed edition:  |z 9781461426271 
830 0 |a Statistics for Biology and Health,  |x 2197-5671 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4419-7170-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)