Sparse and Redundant Representations From Theory to Applications in Signal and Image Processing /
The field of sparse and redundant representation modeling has gone through a major revolution in the past two decades. This started with a series of algorithms for approximating the sparsest solutions of linear systems of equations, later to be followed by surprising theoretical results that guarant...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Autor Corporativo: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York, NY :
Springer New York : Imprint: Springer,
2010.
|
Edición: | 1st ed. 2010. |
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- Sparse and Redundant Representations - Theoretical and Numerical Foundations
- Prologue
- Uniqueness and Uncertainty
- Pursuit Algorithms - Practice
- Pursuit Algorithms - Guarantees
- From Exact to Approximate Solutions
- Iterative-Shrinkage Algorithms
- Towards Average PerformanceAnalysis
- The Dantzig-Selector Algorithm
- From Theory to Practice - Signal and Image Processing Applications
- Sparsity-Seeking Methods in Signal Processing
- Image Deblurring - A Case Study
- MAP versus MMSE Estimation
- The Quest for a Dictionary
- Image Compression - Facial Images
- Image Denoising
- Other Applications
- Epilogue.