Vitushkin's Conjecture for Removable Sets
Vitushkin's conjecture, a special case of Painlevé's problem, states that a compact subset of the complex plane with finite linear Hausdorff measure is removable for bounded analytic functions if and only if it intersects every rectifiable curve in a set of zero arclength measure. Chapter...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Autor Corporativo: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York, NY :
Springer New York : Imprint: Springer,
2010.
|
Edición: | 1st ed. 2010. |
Colección: | Universitext,
|
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- Removable Sets and Analytic Capacity
- Removable Sets and Hausdorff Measure
- Garabedian Duality for Hole-Punch Domains
- Melnikov and Verdera's Solution to the Denjoy Conjecture
- Some Measure Theory
- A Solution to Vitushkin's Conjecture Modulo Two Difficult Results
- The T(b) Theorem of Nazarov, Treil, and Volberg
- The Curvature Theorem of David and Léger.