Cargando…

Domain Driven Data Mining

In the present thriving global economy a need has evolved for complex data analysis to enhance an organization's production systems, decision-making tactics, and performance. In turn, data mining has emerged as one of the most active areas in information technologies. Domain Driven Data Mining...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Cao, Longbing (Autor), Yu, Philip S. (Autor), Zhang, Chengqi (Autor), Zhao, Yanchang (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer US : Imprint: Springer, 2010.
Edición:1st ed. 2010.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4419-5737-5
003 DE-He213
005 20220118135549.0
007 cr nn 008mamaa
008 100301s2010 xxu| s |||| 0|eng d
020 |a 9781441957375  |9 978-1-4419-5737-5 
024 7 |a 10.1007/978-1-4419-5737-5  |2 doi 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
072 7 |a UNF  |2 thema 
072 7 |a UYQE  |2 thema 
082 0 4 |a 006.312  |2 23 
100 1 |a Cao, Longbing.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Domain Driven Data Mining  |h [electronic resource] /  |c by Longbing Cao, Philip S. Yu, Chengqi Zhang, Yanchang Zhao. 
250 |a 1st ed. 2010. 
264 1 |a New York, NY :  |b Springer US :  |b Imprint: Springer,  |c 2010. 
300 |a XVI, 248 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Challenges and Trends -- Methodology -- Ubiquitous Intelligence -- Knowledge Actionability -- AKD Frameworks -- Combined Mining -- Agent-Driven Data Mining -- Post Mining -- Mining Actionable Knowledge on Capital Market Data -- Mining Actionable Knowledge on Social Security Data -- Open Issues and Prospects -- Reading Materials. 
520 |a In the present thriving global economy a need has evolved for complex data analysis to enhance an organization's production systems, decision-making tactics, and performance. In turn, data mining has emerged as one of the most active areas in information technologies. Domain Driven Data Mining offers state-of the-art research and development outcomes on methodologies, techniques, approaches and successful applications in domain driven, actionable knowledge discovery. About this book: Enhances the actionability and wider deployment of existing data-centered data mining through a combination of domain and business oriented factors, constraints and intelligence. Examines real-world challenges to and complexities of the current KDD methodologies and techniques. Details a paradigm shift from "data-centered pattern mining" to "domain driven actionable knowledge discovery" for next-generation KDD research and applications. Bridges the gap between business expectations and research output through detailed exploration of the findings, thoughts and lessons learned in conducting several large-scale, real-world data mining business applications Includes techniques, methodologies and case studies in real-life enterprise data mining Addresses new areas such as blog mining Domain Driven Data Mining is suitable for researchers, practitioners and university students in the areas of data mining and knowledge discovery, knowledge engineering, human-computer interaction, artificial intelligence, intelligent information processing, decision support systems, knowledge management, and KDD project management. 
650 0 |a Data mining. 
650 0 |a Information storage and retrieval systems. 
650 0 |a Business mathematics. 
650 0 |a Business information services. 
650 0 |a Application software. 
650 1 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Business Mathematics. 
650 2 4 |a IT in Business. 
650 2 4 |a Computer and Information Systems Applications. 
700 1 |a Yu, Philip S.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Zhang, Chengqi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Zhao, Yanchang.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781441957382 
776 0 8 |i Printed edition:  |z 9781441957368 
776 0 8 |i Printed edition:  |z 9781489985071 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4419-5737-5  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)