Cargando…

Genetic Programming Theory and Practice VII

Genetic programming has emerged as an important computational methodology for solving complex problems in a diversity of disciplines. In an effort to foster collaborations and facilitate the exchange of ideas and information related to the rapidly advancing field of Genetic Programming, the annual G...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Riolo, Rick (Editor ), O'Reilly, Una-May (Editor ), McConaghy, Trent (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer US : Imprint: Springer, 2010.
Edición:1st ed. 2010.
Colección:Genetic and Evolutionary Computation,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4419-1626-6
003 DE-He213
005 20220112223456.0
007 cr nn 008mamaa
008 100301s2010 xxu| s |||| 0|eng d
020 |a 9781441916266  |9 978-1-4419-1626-6 
024 7 |a 10.1007/978-1-4419-1626-6  |2 doi 
050 4 |a Q334-342 
050 4 |a TA347.A78 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Genetic Programming Theory and Practice VII  |h [electronic resource] /  |c edited by Rick Riolo, Una-May O'Reilly, Trent McConaghy. 
250 |a 1st ed. 2010. 
264 1 |a New York, NY :  |b Springer US :  |b Imprint: Springer,  |c 2010. 
300 |a XIV, 231 p. 100 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Genetic and Evolutionary Computation,  |x 1932-0175 
505 0 |a GPTP 2009: An Example of Evolvability -- Environmental Sensing of Expert Knowledge in a Computational Evolution System for Complex Problem Solving in Human Genetics -- Evolving Coevolutionary Classifiers Under Large Attribute Spaces -- Symbolic Regression Via Genetic Programming as a Discovery Engine: Insights on Outliers and Prototypes -- Symbolic Regression of Implicit Equations -- A Steady-State Version of the Age-Layered Population Structure EA -- Latent Variable Symbolic Regression for High-Dimensional Inputs -- Algorithmic Trading with Developmental and Linear Genetic Programming -- High-Significance Averages of Event-Related Potential Via Genetic Programming -- Using Multi-Objective Genetic Programming to Synthesize Stochastic Processes -- Graph Structured Program Evolution: Evolution of Loop Structures -- A Functional Crossover Operator for Genetic Programming -- Symbolic Regression of Conditional Target Expressions. 
520 |a Genetic programming has emerged as an important computational methodology for solving complex problems in a diversity of disciplines. In an effort to foster collaborations and facilitate the exchange of ideas and information related to the rapidly advancing field of Genetic Programming, the annual Genetic Programming Theory and Practice Workshop was organized by the University of Michigan's Center for the Study of Complex Systems to provide a forum for both those who develop computational theory and those that practice the art of computation. Genetic Programming Theory and Practice VII presents the results of this workshop, contributed by the foremost international researchers and practitioners in the GP arena. Contributions examine the similarities and differences between theoretical and empirical results on real-world problems, and explore the synergy between theory and practice, producing a comprehensive view of the state of the art in GP application. Application areas include chemical process control, circuit design, financial data mining and bio-informatics, to name a few. About this book: Discusses the hurdles encountered when solving large-scale, cutting-edge applications Provides in-depth presentations of the latest and most significant applications of GP and the most recent theoretical results with direct applicability to state-of-the-art problems Contributed by GP theorists from major universities and active practitioners from industry examining how GP theory informs practice and how GP practice impacts GP theory Genetic Programming Theory and Practice VII is suitable for researchers, practitioners and students of Genetic Programming, including industry technical staffs, technical consultants and business entrepreneurs. 
650 0 |a Artificial intelligence. 
650 0 |a Computer programming. 
650 0 |a Computer science. 
650 0 |a Algorithms. 
650 1 4 |a Artificial Intelligence. 
650 2 4 |a Programming Techniques. 
650 2 4 |a Theory of Computation. 
650 2 4 |a Algorithms. 
700 1 |a Riolo, Rick.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a O'Reilly, Una-May.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a McConaghy, Trent.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781441916532 
776 0 8 |i Printed edition:  |z 9781441916259 
776 0 8 |i Printed edition:  |z 9781461425014 
830 0 |a Genetic and Evolutionary Computation,  |x 1932-0175 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4419-1626-6  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)