Cargando…

Deformation Theory

The basic problem of deformation theory in algebraic geometry involves watching a small deformation of one member of a family of objects, such as varieties, or subschemes in a fixed space, or vector bundles on a fixed scheme. In this new book, Robin Hartshorne studies first what happens over small i...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hartshorne, Robin (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2010.
Edición:1st ed. 2010.
Colección:Graduate Texts in Mathematics, 257
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4419-1596-2
003 DE-He213
005 20220114011912.0
007 cr nn 008mamaa
008 100301s2010 xxu| s |||| 0|eng d
020 |a 9781441915962  |9 978-1-4419-1596-2 
024 7 |a 10.1007/978-1-4419-1596-2  |2 doi 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
072 7 |a PBMW  |2 thema 
082 0 4 |a 516.35  |2 23 
100 1 |a Hartshorne, Robin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Deformation Theory  |h [electronic resource] /  |c by Robin Hartshorne. 
250 |a 1st ed. 2010. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2010. 
300 |a VIII, 234 p. 19 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 2197-5612 ;  |v 257 
505 0 |a First-Order Deformations -- Higher-Order Deformations -- Formal Moduli -- Global Questions. 
520 |a The basic problem of deformation theory in algebraic geometry involves watching a small deformation of one member of a family of objects, such as varieties, or subschemes in a fixed space, or vector bundles on a fixed scheme. In this new book, Robin Hartshorne studies first what happens over small infinitesimal deformations, and then gradually builds up to more global situations, using methods pioneered by Kodaira and Spencer in the complex analytic case, and adapted and expanded in algebraic geometry by Grothendieck. Topics include: * deformations over the dual numbers; * smoothness and the infinitesimal lifting property; * Zariski tangent space and obstructions to deformation problems; * pro-representable functors of Schlessinger; * infinitesimal study of moduli spaces such as the Hilbert scheme, Picard scheme, moduli of curves, and moduli of stable vector bundles. The author includes numerous exercises, as well as important examples illustrating various aspects of the theory. This text is based on a graduate course taught by the author at the University of California, Berkeley. 
650 0 |a Algebraic geometry. 
650 1 4 |a Algebraic Geometry. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781441916136 
776 0 8 |i Printed edition:  |z 9781461425205 
776 0 8 |i Printed edition:  |z 9781441915955 
830 0 |a Graduate Texts in Mathematics,  |x 2197-5612 ;  |v 257 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4419-1596-2  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)