Information Theoretic Learning Renyi's Entropy and Kernel Perspectives /
This book presents the first cohesive treatment of Information Theoretic Learning (ITL) algorithms to adapt linear or nonlinear learning machines both in supervised or unsupervised paradigms. ITL is a framework where the conventional concepts of second order statistics (covariance, L2 distances, cor...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | Principe, Jose C. (Autor) |
Autor Corporativo: | SpringerLink (Online service) |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York, NY :
Springer New York : Imprint: Springer,
2010.
|
Edición: | 1st ed. 2010. |
Colección: | Information Science and Statistics,
|
Temas: | |
Acceso en línea: | Texto Completo |
Ejemplares similares
-
Tracking and Sensor Data Fusion Methodological Framework and Selected Applications /
por: Koch, Wolfgang
Publicado: (2014) -
Learning from Data Streams Processing Techniques in Sensor Networks /
Publicado: (2007) -
Particle Filters for Random Set Models
por: Ristic, Branko
Publicado: (2013) -
Intelligent Multimedia Surveillance Current Trends and Research /
Publicado: (2013) -
Precision Landmark Location for Machine Vision and Photogrammetry Finding and Achieving the Maximum Possible Accuracy /
por: Gutierrez, José A., et al.
Publicado: (2008)