Cargando…

Towards Higher Categories

The purpose of this book is to give background for those who would like to delve into some higher category theory. It is not a primer on higher category theory itself. It begins with a paper by John Baez and Michael Shulman which explores informally, by analogy and direct connection, how cohomology...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Baez, John C. (Editor ), May, J. Peter (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2010.
Edición:1st ed. 2010.
Colección:The IMA Volumes in Mathematics and its Applications, 152
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4419-1524-5
003 DE-He213
005 20220116173207.0
007 cr nn 008mamaa
008 100301s2010 xxu| s |||| 0|eng d
020 |a 9781441915245  |9 978-1-4419-1524-5 
024 7 |a 10.1007/978-1-4419-1524-5  |2 doi 
050 4 |a QA169 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512.6  |2 23 
245 1 0 |a Towards Higher Categories  |h [electronic resource] /  |c edited by John C. Baez, J. Peter May. 
250 |a 1st ed. 2010. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2010. 
300 |a XIII, 283 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a The IMA Volumes in Mathematics and its Applications,  |x 2198-3224 ;  |v 152 
505 0 |a Lectures on -Categories and Cohomology -- A Survey of (#x221E;, 1)-Categories -- Internal Categorical Structures in Homotopical Algebra -- A 2-Categories Companion -- Notes on 1- and 2-Gerbes -- An Australian Conspectus of Higher Categories. 
520 |a The purpose of this book is to give background for those who would like to delve into some higher category theory. It is not a primer on higher category theory itself. It begins with a paper by John Baez and Michael Shulman which explores informally, by analogy and direct connection, how cohomology and other tools of algebraic topology are seen through the eyes of n-category theory. The idea is to give some of the motivations behind this subject. There are then two survey articles, by Julie Bergner and Simona Paoli, about (infinity,1) categories and about the algebraic modelling of homotopy n-types. These are areas that are particularly well understood, and where a fully integrated theory exists. The main focus of the book is on the richness to be found in the theory of bicategories, which gives the essential starting point towards the understanding of higher categorical structures. An article by Stephen Lack gives a thorough, but informal, guide to this theory. A paper by Larry Breen on the theory of gerbes shows how such categorical structures appear in differential geometry. This book is dedicated to Max Kelly, the founder of the Australian school of category theory, and an historical paper by Ross Street describes its development. 
650 0 |a Algebra, Homological. 
650 0 |a Algebraic topology. 
650 0 |a Topology. 
650 1 4 |a Category Theory, Homological Algebra. 
650 2 4 |a Algebraic Topology. 
650 2 4 |a Topology. 
700 1 |a Baez, John C.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a May, J. Peter.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781441915368 
776 0 8 |i Printed edition:  |z 9781441915238 
776 0 8 |i Printed edition:  |z 9781461424635 
830 0 |a The IMA Volumes in Mathematics and its Applications,  |x 2198-3224 ;  |v 152 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4419-1524-5  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)