Cargando…

Perception-Action Cycle Models, Architectures, and Hardware /

The perception-action cycle is the circular flow of information that takes place between the organism and its environment in the course of a sensory-guided sequence of behavior towards a goal. Each action causes changes in the environment that are analyzed bottom-up through the perceptual hierarchy...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Cutsuridis, Vassilis (Editor ), Hussain, Amir (Editor ), Taylor, John G. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Springer Series in Cognitive and Neural Systems,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4419-1452-1
003 DE-He213
005 20220113082609.0
007 cr nn 008mamaa
008 110131s2011 xxu| s |||| 0|eng d
020 |a 9781441914521  |9 978-1-4419-1452-1 
024 7 |a 10.1007/978-1-4419-1452-1  |2 doi 
050 4 |a RC321-580 
072 7 |a PSAN  |2 bicssc 
072 7 |a MED057000  |2 bisacsh 
072 7 |a PSAN  |2 thema 
082 0 4 |a 612.8  |2 23 
245 1 0 |a Perception-Action Cycle  |h [electronic resource] :  |b Models, Architectures, and Hardware /  |c edited by Vassilis Cutsuridis, Amir Hussain, John G. Taylor. 
250 |a 1st ed. 2011. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2011. 
300 |a XIV, 784 p. 237 illus., 76 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Cognitive and Neural Systems,  |x 2363-9113 
505 0 |a Preface -- Contents -- Contributors -- Part I. Computational neuroscience models -- Chapter 1. The Role of Attention in Shaping Visual Perceptual Processes John Tsotsos, Albert L. Rothenstein -- Chapter 2. Sensory fusion Mauro Ursino, Elisa Magosso, Cristiano Cuppini -- Chapter 3. Modeling learning and memory consistently from psychology to physiology, Andrew Coward -- Chapter 4. Value maps, drives and emotions Daniel Levine -- Chapter 5. Computational neuroscience models: Error monitoring, conflict resolution and decision making Joshua Brown, William H. Alexander -- Chapter 6. Neural Network Models for Reaching and Dexterous Manipulation in Humans and Anthropomorphic Robotic Systems Rodolphe Gentili, Hyuk Oh, Javier Molina, Jose Contreras-Vidal -- Chapter 7. Schemata learning Jun Tani, Ryunosuke Nishimoto -- Chapter 8. Perception-reason-conceptualization-knowledge representation-reasoning representation-action cycle: The view from the brain John Taylor -- Chapter 9. Consciousness, decision making and neural computation Edmund Rolls -- Chapter 10. A Review of Consciousness Models John G. Taylor -- Part II. Cognitive architectures -- Chapter 11. Vision, attention control and goals creation system, Konstantinos Rapantzikos, Yiannis Avrithis, Stefanos Kolias -- Chapter 12. Semantics extraction from multimedia data: an ontology-based machine learning approach Sergios Petridis, Stavros Perantonis -- Chapter 13. Cognitive algorithms and systems of episodic memory, semantic memory and their learnings Qi Zhang -- Chapter 14. Motivational Processes Within the Perception-Action Cycle Ron Sun, Nick Wilson -- Chapter 15. Error monitoring, conflict resolution and decision making Pedro Lima -- Chapter 16. Developmental Learning of Cooperative Robot Skills: A Hierarchical Multi-Agent Architecture John Karigiannis, Theodoros Rekatsinas, Costas S. Tzafestas -- Chapter 17. Actions & Imagined Actions in Cognitive robots Vishwanathan Mohan, Pietro Morasso, Giorgio Metta, Stathis Kasderidis -- Chapter 18. Cognitive Algorithms and Systems: Reasoning and Knowledge Representation Artur S. d'Avila Garcez, Luis C. Lamb -- Chapter 19. Information theory of decisions and actions Tali Tishby, Daniel Polani -- Chapter 20. Artificial consciousness, Antonio Chella, Riccardo Manzotti -- Part III. Hardware implementations -- Chapter 21. Smart sensor networks Alvin Lim -- Chapter 22. Multisensor Fusion for Low-Power Wireless Microsystems, Alan Murray, Tong Boon Tang -- Chapter 23. Bio-inspired mechatronics and control interfaces. Panagiotis Artemiadis, Kostas Kyriakopoulos.-Subject index. 
520 |a The perception-action cycle is the circular flow of information that takes place between the organism and its environment in the course of a sensory-guided sequence of behavior towards a goal. Each action causes changes in the environment that are analyzed bottom-up through the perceptual hierarchy and lead to the processing of further action, and top-down through the executive hierarchy toward motor effectors. These actions cause new changes that are analyzed and lead to new action, and so the cycle continues. The Perception-Action cycle: Models, Architectures and Hardware book provides focused and easily accessible reviews of various aspects of the perception-action cycle. It is an unparalleled resource of information that will be an invaluable companion to anyone in constructing and developing models, algorithms, and hardware implementations of autonomous machines empowered with cognitive capabilities. The book is divided into three main parts. In the first part, leading computational neuroscientists present brain-inspired models of perception, attention, cognitive control, decision making, conflict resolution and monitoring, knowledge representation and reasoning, learning and memory, planning and action, and consciousness grounded in experimental data. In the second part, architectures, algorithms, and systems with cognitive capabilities and minimal guidance from the brain are discussed. These architectures, algorithms, and systems are inspired by cognitive science, computer vision, robotics, information theory, machine learning, computer agents, and artificial intelligence. In the third part, the analysis, design, and implementation of hardware systems with robust cognitive abilities from the areas of mechatronics, sensing technology, sensor fusion, smart sensor networks, control rules, controllability, stability, model/knowledge representation, and reasoning are discussed. About the Editors: Vassilis Cutsuridis is a Senior Research Scientist at the Center for Memory and Brain at Boston University, Boston, USA. Amir Hussain is a Reader in Computing Science in the Department of Computing Science and Mathematics at the University of Stirling, UK. John G. Taylor is an Emeritus Distinguished Professor of Mathematics in the Department of Mathematics at King's College, London, UK. 
650 0 |a Neurosciences. 
650 0 |a Computer science. 
650 0 |a Signal processing. 
650 1 4 |a Neuroscience. 
650 2 4 |a Theory of Computation. 
650 2 4 |a Signal, Speech and Image Processing . 
700 1 |a Cutsuridis, Vassilis.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Hussain, Amir.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Taylor, John G.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781441914576 
776 0 8 |i Printed edition:  |z 9781441914514 
776 0 8 |i Printed edition:  |z 9781493939794 
830 0 |a Springer Series in Cognitive and Neural Systems,  |x 2363-9113 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4419-1452-1  |z Texto Completo 
912 |a ZDB-2-SBL 
912 |a ZDB-2-SXB 
950 |a Biomedical and Life Sciences (SpringerNature-11642) 
950 |a Biomedical and Life Sciences (R0) (SpringerNature-43708)