Cargando…

Data Mining Special Issue in Annals of Information Systems /

Over the course of the last twenty years, research in data mining has seen a substantial increase in interest, attracting original contributions from various disciplines including computer science, statistics, operations research, and information systems. Data mining supports a wide range of applica...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Stahlbock, Robert (Editor ), Crone, Sven F. (Editor ), Lessmann, Stefan (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer US : Imprint: Springer, 2010.
Edición:1st ed. 2010.
Colección:Annals of Information Systems, 8
Temas:
Acceso en línea:Texto Completo
Tabla de Contenidos:
  • Data Mining and Information Systems: Quo Vadis?
  • Confirmatory data analysis
  • Response-Based Segmentation Using Finite Mixture Partial Least Squares
  • Knowledge discovery from supervised learning
  • Building Acceptable Classification Models
  • Mining Interesting Rules Without Support Requirement: A General Universal Existential Upward Closure Property
  • Classification Techniques and Error Control in Logic Mining
  • Classification analysis
  • An Extended Study of the Discriminant Random Forest
  • Prediction with the SVM Using Test Point Margins
  • Effects of Oversampling Versus Cost-Sensitive Learning for Bayesian and SVM Classifiers
  • The Impact of Small Disjuncts on Classifier Learning
  • Hybrid data mining procedures
  • Predicting Customer Loyalty Labels in a Large Retail Database: A Case Study in Chile
  • PCA-based Time Series Similarity Search
  • Evolutionary Optimization of Least-Squares Support Vector Machines
  • Genetically Evolved kNN Ensembles
  • Web-mining
  • Behaviorally Founded Recommendation Algorithm for Browsing Assistance Systems
  • Using Web Text Mining to Predict Future Events: A Test of the Wisdom of Crowds Hypothesis
  • Privacy-preserving data mining
  • Avoiding Attribute Disclosure with the (Extended) p-Sensitive k-Anonymity Model
  • Privacy-Preserving Random Kernel Classification of Checkerboard Partitioned Data.