Cargando…

Bayesian and Frequentist Regression Methods

Bayesian and Frequentist Regression Methods provides a modern account of both Bayesian and frequentist methods of regression analysis. Many texts cover one or the other of the approaches, but this is the most comprehensive combination of Bayesian and frequentist methods that exists in one place. The...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Wakefield, Jon (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Springer Series in Statistics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4419-0925-1
003 DE-He213
005 20220120025045.0
007 cr nn 008mamaa
008 130104s2013 xxu| s |||| 0|eng d
020 |a 9781441909251  |9 978-1-4419-0925-1 
024 7 |a 10.1007/978-1-4419-0925-1  |2 doi 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Wakefield, Jon.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Bayesian and Frequentist Regression Methods  |h [electronic resource] /  |c by Jon Wakefield. 
250 |a 1st ed. 2013. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a XIX, 697 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Statistics,  |x 2197-568X 
505 0 |a Introduction -- Frequentist Inference -- Bayesian Inference -- Linear Models -- Binary Data Models -- General Regression Models. 
520 |a Bayesian and Frequentist Regression Methods provides a modern account of both Bayesian and frequentist methods of regression analysis. Many texts cover one or the other of the approaches, but this is the most comprehensive combination of Bayesian and frequentist methods that exists in one place. The two philosophical approaches to regression methodology are featured here as complementary techniques, with theory and data analysis providing supplementary components of the discussion. In particular, methods are illustrated using a variety of data sets. The majority of the data sets are drawn from biostatistics but the techniques are generalizable to a wide range of other disciplines. While the philosophy behind each approach is discussed, the book is not ideological in nature and an emphasis is placed on practical application. It is shown that, in many situations, careful application of the respective approaches can lead to broadly similar conclusions. To use this text, the reader requires a basic understanding of calculus and linear algebra, and introductory courses in probability and statistical theory. The book is based on the author's experience teaching a graduate sequence in regression methods. The book website contains all of the code to reproduce all of the analyses and figures contained in the book. 
650 0 |a Statistics . 
650 1 4 |a Statistical Theory and Methods. 
650 2 4 |a Statistics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781441909268 
776 0 8 |i Printed edition:  |z 9781441909244 
776 0 8 |i Printed edition:  |z 9781493938629 
830 0 |a Springer Series in Statistics,  |x 2197-568X 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4419-0925-1  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)