Cargando…

Spectral Analysis of Large Dimensional Random Matrices

The aim of the book is to introduce basic concepts, main results, and widely applied mathematical tools in the spectral analysis of large dimensional random matrices. The core of the book focuses on results established under moment conditions on random variables using probabilistic methods, and is t...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Bai, Zhidong (Autor), Silverstein, Jack W. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2010.
Edición:2nd ed. 2010.
Colección:Springer Series in Statistics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4419-0661-8
003 DE-He213
005 20220119004018.0
007 cr nn 008mamaa
008 100301s2010 xxu| s |||| 0|eng d
020 |a 9781441906618  |9 978-1-4419-0661-8 
024 7 |a 10.1007/978-1-4419-0661-8  |2 doi 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Bai, Zhidong.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Spectral Analysis of Large Dimensional Random Matrices  |h [electronic resource] /  |c by Zhidong Bai, Jack W. Silverstein. 
250 |a 2nd ed. 2010. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2010. 
300 |a XVI, 552 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Statistics,  |x 2197-568X 
505 0 |a Wigner Matrices and Semicircular Law -- Sample Covariance Matrices and the Mar#x010D;enko-Pastur Law -- Product of Two Random Matrices -- Limits of Extreme Eigenvalues -- Spectrum Separation -- Semicircular Law for Hadamard Products -- Convergence Rates of ESD -- CLT for Linear Spectral Statistics -- Eigenvectors of Sample Covariance Matrices -- Circular Law -- Some Applications of RMT. 
520 |a The aim of the book is to introduce basic concepts, main results, and widely applied mathematical tools in the spectral analysis of large dimensional random matrices. The core of the book focuses on results established under moment conditions on random variables using probabilistic methods, and is thus easily applicable to statistics and other areas of science. The book introduces fundamental results, most of them investigated by the authors, such as the semicircular law of Wigner matrices, the Marcenko-Pastur law, the limiting spectral distribution of the multivariate F matrix, limits of extreme eigenvalues, spectrum separation theorems, convergence rates of empirical distributions, central limit theorems of linear spectral statistics, and the partial solution of the famous circular law. While deriving the main results, the book simultaneously emphasizes the ideas and methodologies of the fundamental mathematical tools, among them being: truncation techniques, matrix identities, moment convergence theorems, and the Stieltjes transform. Its treatment is especially fitting to the needs of mathematics and statistics graduate students and beginning researchers, having a basic knowledge of matrix theory and an understanding of probability theory at the graduate level, who desire to learn the concepts and tools in solving problems in this area. It can also serve as a detailed handbook on results of large dimensional random matrices for practical users. This second edition includes two additional chapters, one on the authors' results on the limiting behavior of eigenvectors of sample covariance matrices, another on applications to wireless communications and finance. While attempting to bring this edition up-to-date on recent work, it also provides summaries of other areas which are typically considered part of the general field of random matrix theory. Zhidong Bai is a professor of the School of Mathematics and Statistics at Northeast Normal University and Department of Statistics and Applied Probability at National University of Singapore. He is a Fellow of the Third World Academy of Sciences and a Fellow of the Institute of Mathematical Statistics. Jack W. Silverstein is a professor in the Department of Mathematics at North Carolina State University. He is a Fellow of the Institute of Mathematical Statistics. . 
650 0 |a Statistics . 
650 1 4 |a Statistical Theory and Methods. 
700 1 |a Silverstein, Jack W.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781441906625 
776 0 8 |i Printed edition:  |z 9781441906601 
776 0 8 |i Printed edition:  |z 9781461425922 
830 0 |a Springer Series in Statistics,  |x 2197-568X 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4419-0661-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)