Cargando…

Efficient Learning Machines Theories, Concepts, and Applications for Engineers and System Designers /

Machine learning techniques provide cost-effective alternatives to traditional methods for extracting underlying relationships between information and data and for predicting future events by processing existing information to train models. Efficient Learning Machines explores the major topics of ma...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Awad, Mariette (Autor), Khanna, Rahul (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berkeley, CA : Apress : Imprint: Apress, 2015.
Edición:1st ed. 2015.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4302-5990-9
003 DE-He213
005 20220512150018.0
007 cr nn 008mamaa
008 150427s2015 xxu| s |||| 0|eng d
020 |a 9781430259909  |9 978-1-4302-5990-9 
024 7 |a 10.1007/978-1-4302-5990-9  |2 doi 
050 4 |a Q334-342 
050 4 |a TA347.A78 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Awad, Mariette.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Efficient Learning Machines  |h [electronic resource] :  |b Theories, Concepts, and Applications for Engineers and System Designers /  |c by Mariette Awad, Rahul Khanna. 
250 |a 1st ed. 2015. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2015. 
300 |a XIX, 268 p. 88 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
506 0 |a Open Access 
520 |a Machine learning techniques provide cost-effective alternatives to traditional methods for extracting underlying relationships between information and data and for predicting future events by processing existing information to train models. Efficient Learning Machines explores the major topics of machine learning, including knowledge discovery, classifications, genetic algorithms, neural networking, kernel methods, and biologically-inspired techniques. Mariette Awad and Rahul Khanna's synthetic approach weaves together the theoretical exposition, design principles, and practical applications of efficient machine learning. Their experiential emphasis, expressed in their close analysis of sample algorithms throughout the book, aims to equip engineers, students of engineering, and system designers to design and create new and more efficient machine learning systems. Readers of Efficient Learning Machines will learn how to recognize and analyze the problems that machine learning technology can solve for them, how to implement and deploy standard solutions to sample problems, and how to design new systems and solutions. Advances in computing performance, storage, memory, unstructured information retrieval, and cloud computing have coevolved with a new generation of machine learning paradigms and big data analytics, which the authors present in the conceptual context of their traditional precursors. Awad and Khanna explore current developments in the deep learning techniques of deep neural networks, hierarchical temporal memory, and cortical algorithms. Nature suggests sophisticated learning techniques that deploy simple rules to generate highly intelligent and organized behaviors with adaptive, evolutionary, and distributed properties. The authors examine the most popular biologically-inspired algorithms, together with a sample application to distributed datacenter management. They also discuss machine learning techniques for addressing problems of multi-objective optimization in which solutions in real-world systems are constrained and evaluated based on how well they perform with respect to multiple objectives in aggregate. Two chapters on support vector machines and their extensions focus on recent improvements to the classification and regression techniques at the core of machine learning. 
650 0 |a Artificial intelligence. 
650 1 4 |a Artificial Intelligence. 
700 1 |a Khanna, Rahul.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781430259893 
776 0 8 |i Printed edition:  |z 9781430259916 
776 0 8 |i Printed edition:  |z 9781484283721 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4302-5990-9  |z Texto Completo 
912 |a ZDB-2-CWD 
912 |a ZDB-2-SXPC 
912 |a ZDB-2-SOB 
950 |a Professional and Applied Computing (SpringerNature-12059) 
950 |a Professional and Applied Computing (R0) (SpringerNature-43716)