Cargando…

Computer Vision Metrics Survey, Taxonomy, and Analysis /

Computer Vision Metrics provides an extensive survey and analysis of over 100 current and historical feature description and machine vision methods, with a detailed taxonomy for local, regional and global features. This book provides necessary background to develop intuition about why interest point...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Krig, Scott (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berkeley, CA : Apress : Imprint: Apress, 2014.
Edición:1st ed. 2014.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4302-5930-5
003 DE-He213
005 20220124155840.0
007 cr nn 008mamaa
008 140614s2014 xxu| s |||| 0|eng d
020 |a 9781430259305  |9 978-1-4302-5930-5 
024 7 |a 10.1007/978-1-4302-5930-5  |2 doi 
050 4 |a T385 
072 7 |a UML  |2 bicssc 
072 7 |a COM012000  |2 bisacsh 
072 7 |a UML  |2 thema 
082 0 4 |a 006.6  |2 23 
100 1 |a Krig, Scott.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Computer Vision Metrics  |h [electronic resource] :  |b Survey, Taxonomy, and Analysis /  |c by Scott Krig. 
250 |a 1st ed. 2014. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2014. 
300 |a XXXI, 508 p. 216 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
506 0 |a Open Access 
520 |a Computer Vision Metrics provides an extensive survey and analysis of over 100 current and historical feature description and machine vision methods, with a detailed taxonomy for local, regional and global features. This book provides necessary background to develop intuition about why interest point detectors and feature descriptors actually work, how they are designed, with observations about tuning the methods for achieving robustness and invariance targets for specific applications. The survey is broader than it is deep, with over 540 references provided to dig deeper. The taxonomy includes search methods, spectra components, descriptor representation, shape, distance functions, accuracy, efficiency, robustness and invariance attributes, and more. Rather than providing 'how-to' source code examples and shortcuts, this book provides a counterpoint discussion to the many fine opencv community source code resources available for hands-on practitioners. 
650 0 |a Computer graphics. 
650 0 |a Computer vision. 
650 0 |a Natural language processing (Computer science). 
650 1 4 |a Computer Graphics. 
650 2 4 |a Computer Vision. 
650 2 4 |a Natural Language Processing (NLP). 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781430259299 
776 0 8 |i Printed edition:  |z 9781430259312 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4302-5930-5  |z Texto Completo 
912 |a ZDB-2-CWD 
912 |a ZDB-2-SXPC 
912 |a ZDB-2-SOB 
950 |a Professional and Applied Computing (SpringerNature-12059) 
950 |a Professional and Applied Computing (R0) (SpringerNature-43716)