Cargando…

Bilinear Control Systems Matrices in Action /

A control system is called bilinear if it is described by linear differential equations in which the control inputs appear as coefficients. The study of bilinear control systems began in the 1960s and has since developed into a fascinating field, vital for the solution of many challenging practical...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Elliott, David (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Dordrecht : Springer Netherlands : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Applied Mathematical Sciences, 169
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4020-9613-6
003 DE-He213
005 20220116010521.0
007 cr nn 008mamaa
008 100301s2009 ne | s |||| 0|eng d
020 |a 9781402096136  |9 978-1-4020-9613-6 
024 7 |a 10.1023/b101451  |2 doi 
050 4 |a Q295 
050 4 |a QA402.3-402.37 
072 7 |a GPFC  |2 bicssc 
072 7 |a SCI064000  |2 bisacsh 
072 7 |a GPFC  |2 thema 
082 0 4 |a 003  |2 23 
100 1 |a Elliott, David.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Bilinear Control Systems  |h [electronic resource] :  |b Matrices in Action /  |c by David Elliott. 
250 |a 1st ed. 2009. 
264 1 |a Dordrecht :  |b Springer Netherlands :  |b Imprint: Springer,  |c 2009. 
300 |a X, 281 p. 8 illus., 2 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied Mathematical Sciences,  |x 2196-968X ;  |v 169 
505 0 |a Symmetric Systems: Lie Theory -- Systems with Drift -- Discrete-Time Bilinear Systems -- Systems with Outputs -- Examples -- Linearization -- Input Structures -- Matrix Algebra -- Lie Algebras and Groups -- Algebraic Geometry -- Transitive Lie Algebras. 
520 |a A control system is called bilinear if it is described by linear differential equations in which the control inputs appear as coefficients. The study of bilinear control systems began in the 1960s and has since developed into a fascinating field, vital for the solution of many challenging practical control problems. Its methods and applications cross inter-disciplinary boundaries, proving useful in areas as diverse as spin control in quantum physics and the study of Lie semigroups. The first half of the book is based upon matrix analysis, introducing Lie algebras and the Campbell-Baker-Hausdorff Theorem. Individual chapters are dedicated to topics such as discrete-time systems, observability and realization, examples from science and engineering, linearization of nonlinear systems, and input-output analysis. Written by one of the leading researchers in the field in a clear and comprehensible manner and laden with proofs, exercises and Mathematica scripts, this involving text will be a vital and thorough introduction to the subject for first-year graduate students of control theory. It will also be of great value to academics and researchers with an interest in matrix analysis, Lie algebra, and semigroups. 
650 0 |a System theory. 
650 0 |a Control theory. 
650 0 |a Algebras, Linear. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Computer science-Mathematics. 
650 1 4 |a Systems Theory, Control . 
650 2 4 |a Linear Algebra. 
650 2 4 |a Topological Groups and Lie Groups. 
650 2 4 |a Symbolic and Algebraic Manipulation. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789048181698 
776 0 8 |i Printed edition:  |z 9781402096167 
776 0 8 |i Printed edition:  |z 9781402096129 
830 0 |a Applied Mathematical Sciences,  |x 2196-968X ;  |v 169 
856 4 0 |u https://doi.uam.elogim.com/10.1023/b101451  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)