Cargando…

Constructive Negations and Paraconsistency

This book presents the author's recent investigations of the two main concepts of negation developed in the constructive logic: the negation as reduction to absurdity (L.E.J. Brouwer) and the strong negation (D. Nelson) are studied in the setting of paraconsistent logic. The paraconsistent logi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Odintsov, Sergei (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Dordrecht : Springer Netherlands : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:Trends in Logic, Studia Logica Library, 26
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4020-6867-6
003 DE-He213
005 20220120013327.0
007 cr nn 008mamaa
008 100301s2008 ne | s |||| 0|eng d
020 |a 9781402068676  |9 978-1-4020-6867-6 
024 7 |a 10.1007/978-1-4020-6867-6  |2 doi 
050 4 |a BC1-199 
072 7 |a HPL  |2 bicssc 
072 7 |a PHI011000  |2 bisacsh 
072 7 |a QDTL  |2 thema 
082 0 4 |a 160  |2 23 
100 1 |a Odintsov, Sergei.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Constructive Negations and Paraconsistency  |h [electronic resource] /  |c by Sergei Odintsov. 
250 |a 1st ed. 2008. 
264 1 |a Dordrecht :  |b Springer Netherlands :  |b Imprint: Springer,  |c 2008. 
300 |a VI, 242 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Trends in Logic, Studia Logica Library,  |x 2212-7313 ;  |v 26 
505 0 |a Reductio ad Absurdum -- Minimal Logic. Preliminary Remarks -- Logic of Classical Refutability -- The Class of Extensions of Minimal Logic -- Adequate Algebraic Semantics for Extensions of Minimal Logic -- Negatively Equivalent Logics -- Absurdity as Unary Operator -- Strong Negation -- Semantical Study of Paraconsistent Nelson's Logic -- N4?-Lattices -- The Class of N4?-Extensions -- Conclusion. 
520 |a This book presents the author's recent investigations of the two main concepts of negation developed in the constructive logic: the negation as reduction to absurdity (L.E.J. Brouwer) and the strong negation (D. Nelson) are studied in the setting of paraconsistent logic. The paraconsistent logics are those, which admit inconsistent but non-trivial theories, i.e., the logics which allow making inferences in non-trivial fashion from an inconsistent set of hypotheses. Logics in which all inconsistent theories are trivial are called explosive. In the intuitionistic logic Li, the negation is defined as reduction to absurdity. The concept of strong negation is realized in the Nelson logic N3. Both logics are explosive and have paraconsistent analogs: Johansson's logic Lj and paraconsistent Nelson's logic N4. It will be shown that refusing the explosion axiom "contradiction implies everything" does not lead to decrease of the expressive power of a logic. To understand, which new expressive possibilities have the logics Lj and N4 as compared to the explosive logics Li and N3, we study the lattices of extensions of the logics Lj and N4. This is the first case when lattices of paraconsistent logics are systematically investigated. The study is based on algebraic methods, demonstrates the remarkable regularity and the similarity of structures of both lattices of logics, and gives essential information on the paraconsistent nature of logics Lj and N4. The methods developed in this book can be applied for investigation of other classes of paraconsistent logics. 
650 0 |a Logic. 
650 0 |a Mathematical logic. 
650 1 4 |a Logic. 
650 2 4 |a Mathematical Logic and Foundations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789048177448 
776 0 8 |i Printed edition:  |z 9789048116300 
776 0 8 |i Printed edition:  |z 9781402068669 
830 0 |a Trends in Logic, Studia Logica Library,  |x 2212-7313 ;  |v 26 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4020-6867-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)