Cargando…

Blind Speech Separation

This is the first book to provide a cutting edge reference to the fascinating topic of blind source separation (BSS) for convolved speech mixtures. Through contributions by the foremost experts on the subject, the book provides an up-to-date account of research findings, explains the underlying theo...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Makino, Shoji (Editor ), Lee, Te-Won (Editor ), Sawada, Hiroshi (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Dordrecht : Springer Netherlands : Imprint: Springer, 2007.
Edición:1st ed. 2007.
Colección:Signals and Communication Technology,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4020-6479-1
003 DE-He213
005 20220120044251.0
007 cr nn 008mamaa
008 100301s2007 ne | s |||| 0|eng d
020 |a 9781402064791  |9 978-1-4020-6479-1 
024 7 |a 10.1007/978-1-4020-6479-1  |2 doi 
050 4 |a TK5102.9 
072 7 |a TJF  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a TJF  |2 thema 
072 7 |a UYS  |2 thema 
082 0 4 |a 621.382  |2 23 
245 1 0 |a Blind Speech Separation  |h [electronic resource] /  |c edited by Shoji Makino, Te-Won Lee, Hiroshi Sawada. 
250 |a 1st ed. 2007. 
264 1 |a Dordrecht :  |b Springer Netherlands :  |b Imprint: Springer,  |c 2007. 
300 |a XVI, 432 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Signals and Communication Technology,  |x 1860-4870 
505 0 |a Multiple Microphone Blind Speech Separation with ICA -- Convolutive Blind Source Separation for Audio Signals -- Frequency-Domain Blind Source Separation -- Blind Source Separation using Space-Time Independent Component Analysis -- TRINICON-based Blind System Identification with Application to Multiple-Source Localization and Separation -- SIMO-Model-Based Blind Source Separation - Principle and its Applications -- Independent Vector Analysis for Convolutive Blind Speech Separation -- Relative Newton and Smoothing Multiplier Optimization Methods for Blind Source Separation -- Underdetermined Blind Speech Separation with Sparseness -- The DUET Blind Source Separation Algorithm -- K-means Based Underdetermined Blind Speech Separation -- Underdetermined Blind Source Separation of Convolutive Mixtures by Hierarchical Clustering and L1-Norm Minimization -- Bayesian Audio Source Separation -- Single Microphone Blind Speech Separation -- Monaural Source Separation -- Probabilistic Decompositions of Spectra for Sound Separation -- Sparsification for Monaural Source Separation -- Monaural Speech Separation by Support Vector Machines: Bridging the Divide Between Supervised and Unsupervised Learning Methods. 
520 |a This is the first book to provide a cutting edge reference to the fascinating topic of blind source separation (BSS) for convolved speech mixtures. Through contributions by the foremost experts on the subject, the book provides an up-to-date account of research findings, explains the underlying theory, and discusses potential applications. The individual chapters are designed to be tutorial in nature with specific emphasis on an in-depth treatment of state of the art techniques. Blind Speech Separation is divided into three parts: Part 1 presents overdetermined or critically determined BSS. Here the main technology is independent component analysis (ICA). ICA is a statistical method for extracting mutually independent sources from their mixtures. This approach utilizes spatial diversity to discriminate between desired and undesired components, i.e., it reduces the undesired components by forming a spatial null towards them. It is, in fact, a blind adaptive beamformer realized by unsupervised adaptive filtering. Part 2 addresses underdetermined BSS, where there are fewer microphones than source signals. Here, the sparseness of speech sources is very useful; we can utilize time-frequency diversity, where sources are active in different regions of the time-frequency plane. Part 3 presents monaural BSS where there is only one microphone. Here, we can separate a mixture by using the harmonicity and temporal structure of the sources. We can build a probabilistic framework by assuming a source model, and separate a mixture by maximizing the a posteriori probability of the sources. 
650 0 |a Signal processing. 
650 0 |a Telecommunication. 
650 1 4 |a Signal, Speech and Image Processing . 
650 2 4 |a Communications Engineering, Networks. 
650 2 4 |a Microwaves, RF Engineering and Optical Communications. 
700 1 |a Makino, Shoji.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Lee, Te-Won.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Sawada, Hiroshi.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789048115105 
776 0 8 |i Printed edition:  |z 9789048176519 
776 0 8 |i Printed edition:  |z 9781402064784 
830 0 |a Signals and Communication Technology,  |x 1860-4870 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4020-6479-1  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)