Cargando…

Variational and Quasi-Variational Inequalities in Mechanics

The variational method is a powerful tool to investigate states and processes in technical devices, nature, living organisms, systems, and economics. The power of the variational method consists in the fact that many of its sta- ments are physical or natural laws themselves. The essence of the varia...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Kravchuk, Alexander S. (Autor), Neittaanmäki, Pekka J. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Dordrecht : Springer Netherlands : Imprint: Springer, 2007.
Edición:1st ed. 2007.
Colección:Solid Mechanics and Its Applications, 147
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4020-6377-0
003 DE-He213
005 20220118105652.0
007 cr nn 008mamaa
008 100301s2007 ne | s |||| 0|eng d
020 |a 9781402063770  |9 978-1-4020-6377-0 
024 7 |a 10.1007/978-1-4020-6377-0  |2 doi 
050 4 |a TJ1-1570 
072 7 |a TGB  |2 bicssc 
072 7 |a TEC009070  |2 bisacsh 
072 7 |a TGB  |2 thema 
082 0 4 |a 621  |2 23 
100 1 |a Kravchuk, Alexander S.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Variational and Quasi-Variational Inequalities in Mechanics  |h [electronic resource] /  |c by Alexander S. Kravchuk, Pekka J. Neittaanmäki. 
250 |a 1st ed. 2007. 
264 1 |a Dordrecht :  |b Springer Netherlands :  |b Imprint: Springer,  |c 2007. 
300 |a XIII, 337 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Solid Mechanics and Its Applications,  |x 2214-7764 ;  |v 147 
505 0 |a Notations and Basics -- Variational Setting of Linear Steady-state Problems -- Variational Theory for Nonlinear Smooth Systems -- Unilateral Constraints and Nondifferentiable Functionals -- Transformation of Variational Principles -- Nonstationary Problems and Thermodynamics -- Solution Methods and Numerical Implementation -- Concluding Remarks. 
520 |a The variational method is a powerful tool to investigate states and processes in technical devices, nature, living organisms, systems, and economics. The power of the variational method consists in the fact that many of its sta- ments are physical or natural laws themselves. The essence of the variational approach for the solution of problems rel- ing to the determination of the real state of systems or processes consists in thecomparisonofclosestates.Theselectioncriteriafortheactualstatesmust be such that all the equations and conditions of the mathematical model are satis?ed. Historically, the ?rst variational theory was the Lagrange theory created to investigate the equilibrium of ?nite-dimensional mechanical systems under holonomic bilateral constraints (bonds). The selection criterion proposed by Lagrange is the admissible displacement principle. In accordance with this principle, the work of the prescribed forces (supposed to be constant) on in?nitesimally small, kinematically admissible (virtual) displacements is zero. It is known that equating the virtual work performed for potential systems to zero is equivalent to the stationarity conditions for the total energy of the system. The transition from bilateral constraints to unilateral ones was performed by O. L. Fourier. Fourier demonstrated that the virtual work on small dist- bances of a stable equilibrium state of a mechanical system under unilateral constraints must be positive (or, at least, nonnegative). Therefore, for such a system the corresponding mathematical model is reduced to an inequality and the problem becomes nonlinear. 
650 0 |a Mechanical engineering. 
650 0 |a Mechanics. 
650 0 |a Mechanics, Applied. 
650 0 |a Solids. 
650 0 |a Computational intelligence. 
650 1 4 |a Mechanical Engineering. 
650 2 4 |a Classical Mechanics. 
650 2 4 |a Solid Mechanics. 
650 2 4 |a Computational Intelligence. 
700 1 |a Neittaanmäki, Pekka J.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789048114696 
776 0 8 |i Printed edition:  |z 9789048176199 
776 0 8 |i Printed edition:  |z 9781402063763 
830 0 |a Solid Mechanics and Its Applications,  |x 2214-7764 ;  |v 147 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4020-6377-0  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)