Cargando…

Noetherian Semigroup Algebras

Within the last decade, semigroup theoretical methods have occurred naturally in many aspects of ring theory, algebraic combinatorics, representation theory and their applications. In particular, motivated by noncommutative geometry and the theory of quantum groups, there is a growing interest in th...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Jespers, Eric (Autor), Okninski, Jan (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Dordrecht : Springer Netherlands : Imprint: Springer, 2007.
Edición:1st ed. 2007.
Colección:Algebra and Applications, 7
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4020-5810-3
003 DE-He213
005 20220115213840.0
007 cr nn 008mamaa
008 100301s2007 ne | s |||| 0|eng d
020 |a 9781402058103  |9 978-1-4020-5810-3 
024 7 |a 10.1007/1-4020-5810-1  |2 doi 
050 4 |a QA174-183 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBG  |2 thema 
082 0 4 |a 512.2  |2 23 
100 1 |a Jespers, Eric.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Noetherian Semigroup Algebras  |h [electronic resource] /  |c by Eric Jespers, Jan Okninski. 
250 |a 1st ed. 2007. 
264 1 |a Dordrecht :  |b Springer Netherlands :  |b Imprint: Springer,  |c 2007. 
300 |a X, 364 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Algebra and Applications,  |x 2192-2950 ;  |v 7 
505 0 |a Prerequisites on semigroup theory -- Prerequisites on ring theory -- Algebras of submonoids of polycyclic-by-finite groups -- General Noetherian semigroup algebras -- Principal ideal rings -- Maximal orders and Noetherian semigroup algebras -- Monoids of I-type -- Monoids of skew type -- Examples. 
520 |a Within the last decade, semigroup theoretical methods have occurred naturally in many aspects of ring theory, algebraic combinatorics, representation theory and their applications. In particular, motivated by noncommutative geometry and the theory of quantum groups, there is a growing interest in the class of semigroup algebras and their deformations. This work presents a comprehensive treatment of the main results and methods of the theory of Noetherian semigroup algebras. These general results are then applied and illustrated in the context of important classes of algebras that arise in a variety of areas and have been recently intensively studied. Several concrete constructions are described in full detail, in particular intriguing classes of quadratic algebras and algebras related to group rings of polycyclic-by-finite groups. These give new classes of Noetherian algebras of small Gelfand-Kirillov dimension. The focus is on the interplay between their combinatorics and the algebraic structure. This yields a rich resource of examples that are of interest not only for the noncommutative ring theorists, but also for researchers in semigroup theory and certain aspects of group and group ring theory. Mathematical physicists will find this work of interest owing to the attention given to applications to the Yang-Baxter equation. 
650 0 |a Group theory. 
650 0 |a Associative rings. 
650 0 |a Associative algebras. 
650 1 4 |a Group Theory and Generalizations. 
650 2 4 |a Associative Rings and Algebras. 
700 1 |a Okninski, Jan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789048112357 
776 0 8 |i Printed edition:  |z 9789048174485 
776 0 8 |i Printed edition:  |z 9781402058097 
830 0 |a Algebra and Applications,  |x 2192-2950 ;  |v 7 
856 4 0 |u https://doi.uam.elogim.com/10.1007/1-4020-5810-1  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)