Cargando…

The Theory of the Moiré Phenomenon Volume II Aperiodic Layers /

Since The Theory of the Moiré Phenomenon was published it became the main reference book in its field. It provided for the first time a complete, unified and coherent theoretical approach for the explanation of the moiré phenomenon, starting from the basics of the theory, but also going in depth i...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Amidror, Isaac (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Dordrecht : Springer Netherlands : Imprint: Springer, 2007.
Edición:1st ed. 2007.
Colección:Computational Imaging and Vision ; 34
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4020-5458-7
003 DE-He213
005 20220119214056.0
007 cr nn 008mamaa
008 100301s2007 ne | s |||| 0|eng d
020 |a 9781402054587  |9 978-1-4020-5458-7 
024 7 |a 10.1007/1-4020-5458-0  |2 doi 
050 4 |a T57-57.97 
072 7 |a PBW  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBW  |2 thema 
082 0 4 |a 519  |2 23 
100 1 |a Amidror, Isaac.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Theory of the Moiré Phenomenon  |h [electronic resource] :  |b Volume II Aperiodic Layers /  |c by Isaac Amidror. 
250 |a 1st ed. 2007. 
264 1 |a Dordrecht :  |b Springer Netherlands :  |b Imprint: Springer,  |c 2007. 
300 |a XV, 493 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Computational Imaging and Vision ;  |v 34 
505 0 |a Background and basic notions -- Glass patterns and fixed loci -- Microstructures: dot trajectories and their morphology -- Moiré phenomena between periodic or aperiodic screens -- Glass patterns in the superposition of aperiodic line gratings -- Quantitative analysis and synthesis of Glass patterns. 
520 |a Since The Theory of the Moiré Phenomenon was published it became the main reference book in its field. It provided for the first time a complete, unified and coherent theoretical approach for the explanation of the moiré phenomenon, starting from the basics of the theory, but also going in depth into more advanced research results. However, it is clear that a single book cannnot cover the full breadth of such a vast subject, and indeed, this original volume admittently concentrated on only some aspects of the moiré theory, while other interesting topics had to be left out. Perhaps the most important area that remained beyond the scope of the original book consists of the moiré effects that occur between correlated random or aperiodic structures. These moiré effects are known as Glass patterns, after Leon Glass who described them in the late 1960s. However, this branch of the moiré theory remained for many years less widely known and less understood than its periodic or repetitive counterpart: Less widely known because moiré effects between aperiodic or random structures are less frequently encountered in everyday's life, and less understood because these effects did not easily lend themselves to the same mathematical methods that so nicely explained the classical moiré effects between periodic or repetitive structures. 
650 0 |a Mathematics. 
650 0 |a Fourier analysis. 
650 0 |a Lasers. 
650 0 |a Information visualization. 
650 1 4 |a Applications of Mathematics. 
650 2 4 |a Fourier Analysis. 
650 2 4 |a Laser. 
650 2 4 |a Data and Information Visualization. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789048111169 
776 0 8 |i Printed edition:  |z 9789048173730 
776 0 8 |i Printed edition:  |z 9781402054570 
830 0 |a Computational Imaging and Vision ;  |v 34 
856 4 0 |u https://doi.uam.elogim.com/10.1007/1-4020-5458-0  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)