Cargando…

Topics in Geometry, Coding Theory and Cryptography

The theory of algebraic function fields over finite fields has its origins in number theory. However, after Goppa`s discovery of algebraic geometry codes around 1980, many applications of function fields were found in different areas of mathematics and information theory, such as coding theory, sphe...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Garcia, Arnaldo (Editor ), Stichtenoth, Henning (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Dordrecht : Springer Netherlands : Imprint: Springer, 2007.
Edición:1st ed. 2007.
Colección:Algebra and Applications, 6
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4020-5334-4
003 DE-He213
005 20220113015213.0
007 cr nn 008mamaa
008 100301s2007 ne | s |||| 0|eng d
020 |a 9781402053344  |9 978-1-4020-5334-4 
024 7 |a 10.1007/1-4020-5334-4  |2 doi 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
072 7 |a PBH  |2 thema 
082 0 4 |a 512.7  |2 23 
245 1 0 |a Topics in Geometry, Coding Theory and Cryptography  |h [electronic resource] /  |c edited by Arnaldo Garcia, Henning Stichtenoth. 
250 |a 1st ed. 2007. 
264 1 |a Dordrecht :  |b Springer Netherlands :  |b Imprint: Springer,  |c 2007. 
300 |a X, 201 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Algebra and Applications,  |x 2192-2950 ;  |v 6 
520 |a The theory of algebraic function fields over finite fields has its origins in number theory. However, after Goppa`s discovery of algebraic geometry codes around 1980, many applications of function fields were found in different areas of mathematics and information theory, such as coding theory, sphere packings and lattices, sequence design, and cryptography. The use of function fields often led to better results than those of classical approaches. This book presents survey articles on some of these new developments. Most of the material is directly related to the interaction between function fields and their various applications; in particular the structure and the number of rational places of function fields are of great significance. The topics focus on material which has not yet been presented in other books or survey articles. Wherever applications are pointed out, a special effort has been made to present some background concerning their use. 
650 0 |a Number theory. 
650 0 |a Algebraic geometry. 
650 0 |a Coding theory. 
650 0 |a Information theory. 
650 0 |a Cryptography. 
650 0 |a Data encryption (Computer science). 
650 1 4 |a Number Theory. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Coding and Information Theory. 
650 2 4 |a Cryptology. 
700 1 |a Garcia, Arnaldo.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Stichtenoth, Henning.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789048173457 
776 0 8 |i Printed edition:  |z 9789048110797 
776 0 8 |i Printed edition:  |z 9781402053337 
830 0 |a Algebra and Applications,  |x 2192-2950 ;  |v 6 
856 4 0 |u https://doi.uam.elogim.com/10.1007/1-4020-5334-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)