Cargando…

Automorphic Forms and Lie Superalgebras

A principal ingredient in the proof of the Moonshine Theorem, connecting the Monster group to modular forms, is the infinite dimensional Lie algebra of physical states of a chiral string on an orbifold of a 26 dimensional torus, called the Monster Lie algebra. It is a Borcherds-Kac-Moody Lie algebra...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ray, Urmie (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Dordrecht : Springer Netherlands : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:Algebra and Applications, 5
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4020-5010-7
003 DE-He213
005 20220113084316.0
007 cr nn 008mamaa
008 100301s2006 ne | s |||| 0|eng d
020 |a 9781402050107  |9 978-1-4020-5010-7 
024 7 |a 10.1007/978-1-4020-5010-7  |2 doi 
050 4 |a QA252-252.5 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512.48  |2 23 
100 1 |a Ray, Urmie.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Automorphic Forms and Lie Superalgebras  |h [electronic resource] /  |c by Urmie Ray. 
250 |a 1st ed. 2006. 
264 1 |a Dordrecht :  |b Springer Netherlands :  |b Imprint: Springer,  |c 2006. 
300 |a X, 278 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Algebra and Applications,  |x 2192-2950 ;  |v 5 
505 0 |a Borcherds-Kac-Moody Lie Superalgebras -- Singular Theta Transforms of Vector Valued Modular Forms -- ?-Graded Vertex Algebras -- Lorentzian BKM Algebras. 
520 |a A principal ingredient in the proof of the Moonshine Theorem, connecting the Monster group to modular forms, is the infinite dimensional Lie algebra of physical states of a chiral string on an orbifold of a 26 dimensional torus, called the Monster Lie algebra. It is a Borcherds-Kac-Moody Lie algebra with Lorentzian root lattice; and has an associated automorphic form having a product expansion describing its structure. Lie superalgebras are generalizations of Lie algebras, useful for depicting supersymmetry - the symmetry relating fermions and bosons. Most known examples of Lie superalgebras with a related automorphic form such as the Fake Monster Lie algebra whose reflection group is given by the Leech lattice arise from (super)string theory and can be derived from lattice vertex algebras. The No-Ghost Theorem from dual resonance theory and a conjecture of Berger-Li-Sarnak on the eigenvalues of the hyperbolic Laplacian provide strong evidence that they are of rank at most 26. The aim of this book is to give the reader the tools to understand the ongoing classification and construction project of this class of Lie superalgebras and is ideal for a graduate course. The necessary background is given within chapters or in appendices. 
650 0 |a Nonassociative rings. 
650 0 |a Number theory. 
650 1 4 |a Non-associative Rings and Algebras. 
650 2 4 |a Number Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789048172542 
776 0 8 |i Printed edition:  |z 9789048109517 
776 0 8 |i Printed edition:  |z 9781402050091 
830 0 |a Algebra and Applications,  |x 2192-2950 ;  |v 5 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4020-5010-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)