Cargando…

An Introduction to Differential Geometry with Applications to Elasticity

curvilinear coordinates. This treatment includes in particular a direct proof of the three-dimensional Korn inequality in curvilinear coordinates. The fourth and last chapter, which heavily relies on Chapter 2, begins by a detailed description of the nonlinear and linear equations proposed by W.T. K...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ciarlet, Philippe G. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Dordrecht : Springer Netherlands : Imprint: Springer, 2005.
Edición:1st ed. 2005.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4020-4248-5
003 DE-He213
005 20220118134747.0
007 cr nn 008mamaa
008 100301s2005 ne | s |||| 0|eng d
020 |a 9781402042485  |9 978-1-4020-4248-5 
024 7 |a 10.1007/1-4020-4248-5  |2 doi 
050 4 |a TA329-348 
050 4 |a TA345-345.5 
072 7 |a TBJ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a TBJ  |2 thema 
082 0 4 |a 620  |2 23 
100 1 |a Ciarlet, Philippe G.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 3 |a An Introduction to Differential Geometry with Applications to Elasticity  |h [electronic resource] /  |c by Philippe G. Ciarlet. 
250 |a 1st ed. 2005. 
264 1 |a Dordrecht :  |b Springer Netherlands :  |b Imprint: Springer,  |c 2005. 
300 |a VI, 210 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Three-Dimensional Differential Geometry -- Differential Geometry of Surfaces -- Applications to Three-Dimensional Elasticity in Curvilinear Coordinates -- Applications to Shell Theory. 
520 |a curvilinear coordinates. This treatment includes in particular a direct proof of the three-dimensional Korn inequality in curvilinear coordinates. The fourth and last chapter, which heavily relies on Chapter 2, begins by a detailed description of the nonlinear and linear equations proposed by W.T. Koiter for modeling thin elastic shells. These equations are "two-dimensional", in the sense that they are expressed in terms of two curvilinear coordinates used for de?ning the middle surface of the shell. The existence, uniqueness, and regularity of solutions to the linear Koiter equations is then established, thanks this time to a fundamental "Korn inequality on a surface" and to an "in?nit- imal rigid displacement lemma on a surface". This chapter also includes a brief introduction to other two-dimensional shell equations. Interestingly, notions that pertain to di?erential geometry per se,suchas covariant derivatives of tensor ?elds, are also introduced in Chapters 3 and 4, where they appear most naturally in the derivation of the basic boundary value problems of three-dimensional elasticity and shell theory. Occasionally, portions of the material covered here are adapted from - cerpts from my book "Mathematical Elasticity, Volume III: Theory of Shells", published in 2000by North-Holland, Amsterdam; in this respect, I am indebted to Arjen Sevenster for his kind permission to rely on such excerpts. Oth- wise, the bulk of this work was substantially supported by two grants from the Research Grants Council of Hong Kong Special Administrative Region, China [Project No. 9040869, CityU 100803 and Project No. 9040966, CityU 100604]. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Mechanics. 
650 0 |a Differential equations. 
650 0 |a Geometry, Differential. 
650 1 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Classical Mechanics. 
650 2 4 |a Differential Equations. 
650 2 4 |a Differential Geometry. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789048170852 
776 0 8 |i Printed edition:  |z 9789048106578 
776 0 8 |i Printed edition:  |z 9781402042478 
856 4 0 |u https://doi.uam.elogim.com/10.1007/1-4020-4248-5  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)