Cargando…

Homotopy Methods in Topological Fixed and Periodic Points Theory

The notion of a ?xed point plays a crucial role in numerous branches of mat- maticsand its applications. Informationabout the existence of such pointsis often the crucial argument in solving a problem. In particular, topological methods of ?xed point theory have been an increasing focus of interest...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Jezierski, Jerzy (Autor), Marzantowicz, Waclaw (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Dordrecht : Springer Netherlands : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:Topological Fixed Point Theory and Its Applications ; 3
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4020-3931-7
003 DE-He213
005 20220114213423.0
007 cr nn 008mamaa
008 100301s2006 ne | s |||| 0|eng d
020 |a 9781402039317  |9 978-1-4020-3931-7 
024 7 |a 10.1007/1-4020-3931-X  |2 doi 
050 4 |a QA612-612.8 
072 7 |a PBPD  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
072 7 |a PBPD  |2 thema 
082 0 4 |a 514.2  |2 23 
100 1 |a Jezierski, Jerzy.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Homotopy Methods in Topological Fixed and Periodic Points Theory  |h [electronic resource] /  |c by Jerzy Jezierski, Waclaw Marzantowicz. 
250 |a 1st ed. 2006. 
264 1 |a Dordrecht :  |b Springer Netherlands :  |b Imprint: Springer,  |c 2006. 
300 |a XII, 320 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Topological Fixed Point Theory and Its Applications ;  |v 3 
505 0 |a Fixed Point Problems -- Lefschetz-Hopf Fixed Point Theory -- Periodic Points by the Lefschetz Theory -- Nielsen Fixed Point Theory -- Periodic Points by the Nielsen Theory -- Homotopy Minimal Periods -- Related Topics and Applications. 
520 |a The notion of a ?xed point plays a crucial role in numerous branches of mat- maticsand its applications. Informationabout the existence of such pointsis often the crucial argument in solving a problem. In particular, topological methods of ?xed point theory have been an increasing focus of interest over the last century. These topological methods of ?xed point theory are divided, roughly speaking, into two types. The ?rst type includes such as the Banach Contraction Principle where the assumptions on the space can be very mild but a small change of the map can remove the ?xed point. The second type, on the other hand, such as the Brouwer and Lefschetz Fixed Point Theorems, give the existence of a ?xed point not only for a given map but also for any its deformations. This book is an exposition of a part of the topological ?xed and periodic point theory, of this second type, based on the notions of Lefschetz and Nielsen numbers. Since both notions are homotopyinvariants, the deformationis used as an essential method, and the assertions of theorems typically state the existence of ?xed or periodic points for every map of the whole homotopy class, we refer to them as homotopy methods of the topological ?xed and periodic point theory. 
650 0 |a Algebraic topology. 
650 0 |a Dynamical systems. 
650 1 4 |a Algebraic Topology. 
650 2 4 |a Dynamical Systems. 
700 1 |a Marzantowicz, Waclaw.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789048105236 
776 0 8 |i Printed edition:  |z 9789048169986 
776 0 8 |i Printed edition:  |z 9781402039300 
830 0 |a Topological Fixed Point Theory and Its Applications ;  |v 3 
856 4 0 |u https://doi.uam.elogim.com/10.1007/1-4020-3931-X  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)