Cargando…

Learning from Nature How to Design New Implantable Biomaterials: From Biomineralization Fundamentals to Biomimetic Materials and Processing Routes Proceedings of the NATO Advanced Study Institute, held in Alvor, Algarve, Portugal, 13-24 October 2003 /

The development of materials for any replacement or regeneration application should be based on the thorough understanding of the structure to be substituted. This is true in many fields, but particularly exigent in substitution and regeneration medicine. The demands upon the material properties lar...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Reis, Rui L. (Editor ), Weiner, S. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Dordrecht : Springer Netherlands : Imprint: Springer, 2005.
Edición:1st ed. 2005.
Colección:NATO Science Series II: Mathematics, Physics and Chemistry, Mathematics, Physics and Chemistry ; 171
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4020-2648-5
003 DE-He213
005 20220113091618.0
007 cr nn 008mamaa
008 100301s2005 ne | s |||| 0|eng d
020 |a 9781402026485  |9 978-1-4020-2648-5 
024 7 |a 10.1007/1-4020-2648-X  |2 doi 
050 4 |a T1-995 
072 7 |a TBC  |2 bicssc 
072 7 |a TEC000000  |2 bisacsh 
072 7 |a TBC  |2 thema 
082 0 4 |a 620  |2 23 
245 1 0 |a Learning from Nature How to Design New Implantable Biomaterials: From Biomineralization Fundamentals to Biomimetic Materials and Processing Routes  |h [electronic resource] :  |b Proceedings of the NATO Advanced Study Institute, held in Alvor, Algarve, Portugal, 13-24 October 2003 /  |c edited by Rui L. Reis, S. Weiner. 
250 |a 1st ed. 2005. 
264 1 |a Dordrecht :  |b Springer Netherlands :  |b Imprint: Springer,  |c 2005. 
300 |a XVIII, 234 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a NATO Science Series II: Mathematics, Physics and Chemistry, Mathematics, Physics and Chemistry ;  |v 171 
505 0 |a Structure and Mechanical Functions in Biological Materials -- Structure-Mechanical Function Relations in Bones and Teeth -- Hierarchical Structure and Mechanical Adaptation of Biological Materials -- Bioceramics, Bioactive Materials and Surface Analysis -- Calcium Phosphate Biomaterials: An Overview -- Nanostructural Control of Implantable Xerogels for the Controlled Release of Biomolecules -- Surface Analysis of Biomaterials and Biomineralization -- Biomimetics and Biomimetic Coatings -- Biomimetics and Bioceramics -- New Biomimetic Coating Technologies and Incorporation of Bioactive Agents and Proteins -- Learning from Nature How to Design Biomimetic Calcium-Phosphate Coatings -- Learning from Marine Creatures How to Design Micro-Lenses -- Tissue Engineering of Mineralized Tissues -- Inkjet Printing for Biomimetic and Biomedical Materials -- Stem Cells and Bioactive Materials -- Embryonic Stem Cells for the Engineering and Regeneration of Mineralized Tissues -- Tissue Engineering of Mineralized Tissues: The Essential Elements. 
520 |a The development of materials for any replacement or regeneration application should be based on the thorough understanding of the structure to be substituted. This is true in many fields, but particularly exigent in substitution and regeneration medicine. The demands upon the material properties largely depend on the site of application and the function it has to restore. Ideally, a replacement material should mimic the living tissue from a mechanical, chemical, biological and functional point of view. Of course this is much easier to write down than to implement in clinical practice. Mineralized tissues such as bones, tooth and shells have attracted, in the last few years, considerable interest as natural anisotropic composite structures with adequate mechanical properties. In fact, Nature is and will continue to be the best materials scientist ever. Who better than nature can design complex structures and control the intricate phenomena (processing routes) that lead to the final shape and structure (from the macro to the nano level) of living creatures? Who can combine biological and physico-chemical mechanisms in such a way that can build ideal structure-properties relationships? Who, else than Nature, can really design smart structural components that respond in-situ to exterior stimulus, being able of adapting constantly their microstructure and correspondent properties? In the described philosophy line, mineralized tissues and biomineralization processes are ideal examples to learn-from for the materials scientist of the future. 
650 0 |a Engineering. 
650 0 |a Biotechnology. 
650 0 |a Inorganic chemistry. 
650 0 |a Materials-Analysis. 
650 0 |a Ceramic materials. 
650 1 4 |a Technology and Engineering. 
650 2 4 |a Biotechnology. 
650 2 4 |a Chemical Bioengineering. 
650 2 4 |a Inorganic Chemistry. 
650 2 4 |a Characterization and Analytical Technique. 
650 2 4 |a Ceramics. 
700 1 |a Reis, Rui L.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Weiner, S.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789048100941 
776 0 8 |i Printed edition:  |z 9781402026447 
776 0 8 |i Printed edition:  |z 9781402026478 
830 0 |a NATO Science Series II: Mathematics, Physics and Chemistry, Mathematics, Physics and Chemistry ;  |v 171 
856 4 0 |u https://doi.uam.elogim.com/10.1007/1-4020-2648-X  |z Texto Completo 
912 |a ZDB-2-CMS 
912 |a ZDB-2-SXC 
950 |a Chemistry and Materials Science (SpringerNature-11644) 
950 |a Chemistry and Material Science (R0) (SpringerNature-43709)